

Professional
Windows® PowerShell

Andrew Watt

01_946939 ffirs.qxp 3/15/07 6:59 PM Page i

01_946939 ffirs.qxp 3/15/07 6:59 PM Page i

Professional
Windows® PowerShell

Andrew Watt

01_946939 ffirs.qxp 3/15/07 6:59 PM Page i

Professional Windows® PowerShell
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada
ISBN: 978-0-471-94693-9
Manufactured in the United States of America
10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Watt, Andrew, 1953-
Professional Windows PowerShell/Andrew Watt.

p. cm.
ISBN 978-0-471-94693-9 (paper/website)

1. Microsoft Windows (Computer file) 2. Operating systems
(Computers) I. Title.

QA76.76.063W39165 2007
005.4'46--dc22

2007008105
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission
of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clear-
ance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the
Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Cross-
point Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/
go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING
LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT.
NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HERE-
FROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT
THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE
AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAP-
PEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.
Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United
States and other countries, and may not be used without written permission. Microsoft and Windows are
registered trademarks of Microsoft Corporation in the United States and/or other countries. All other trade-
marks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product
or vendor mentioned in this book.
Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

01_946939 ffirs.qxp 3/15/07 6:59 PM Page ii

www.wiley.com

To the memory of my late father George Alec Watt.

To Jonathan, Stephen, Hannah, Jeremy, Peter, and Naomi, each a very
special human being to me.

01_946939 ffirs.qxp 3/15/07 6:59 PM Page iii

CreditsExecutive Editor
Chris Webb

Senior Development Editor
Tom Dinse

Technical Editors
Thomas Lee
Joel Stidley

Production Editor
Christine O’Connor

Copy Editor
Foxxe Editorial Services

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Graphics and Production Specialists
Jennifer Mayberry
Barbara Moore
Alicia B. South
Ronald Terry

Quality Control Technicians
John Greenough
Melanie Hoffman

Project Coordinator
Jennifer Theriot

Proofreading and Indexing
Aptara

Anniversary Logo Design
Richard Pacifico

About the Author
Andrew Watt was on the Windows PowerShell beta program for almost two years before product
release. He is a Microsoft Most Valuable Professional, MVP, for SQL Server and is an independent con-
sultant and experienced computer book author. He wrote his first programs in BASIC and 6502
Assembler in 1984 while researching his doctoral thesis.

He is a regular visitor to the Windows PowerShell newsgroup, microsoft.public.windows
.powershell. He can be contacted by email at SVGDeveloper@aol.com.

01_946939 ffirs.qxp 3/15/07 6:59 PM Page iv

Contents

Introduction xv
Acknowledgments xx

Part I: Finding Your Way Around Windows PowerShell 1

Chapter 1: Getting Started with Windows PowerShell 3

Installing Windows PowerShell 3
Installing .NET Framework 2.0 4
Installing Windows PowerShell 7

Starting and Stopping PowerShell 8
Starting PowerShell 8
Exiting PowerShell 10
Startup Options 10

Finding Available Commands 11
Getting Help 14
Basic Housekeeping 17
Case Insensitivity 18
What You Get in PowerShell 19

Interactive Command Shell 19
Cmdlets 20
Scripting Language 21

Summary 23

Chapter 2: The Need for Windows PowerShell 25

Limitations of CMD.exe 27
Batch Files 28
Inconsistency of Implementation 28
Inability to Answer Questions 29
Lack of Integration with GUI Tools 29

The GUI Emphasis in Windows 29
Previous Attempted Solutions 29

Windows Script Host 30
Windows Management Instrumentation 30

Summary 31

02_946939 ftoc.qxp 3/15/07 6:59 PM Page v

vi

Contents

Chapter 3: The Windows PowerShell Approach 33

A New Architecture 33
.NET Framework-Based Architecture 34
Object-Based Architecture 35

A New Cross-Tool Approach 38
GUI Shell (MMC Layered over PowerShell) 39
Command Line 39
Command Scripting 41
COM Scripting 43

Namespaces as Drives 45
File System Provider 47
Registry 47
Aliases 48
Variables 49
Active Directory 50
Certificates 51

Extensibility and Backward Compatibility 51
Aliases 51
Use Existing Utilities 53
Use Familiar Commands 55
Long Term Roadmap: Complete Coverage in 3 to 5 Years 55
COM Access 56
WMI Access 56
.NET Class Access 56

Object-Based Approach in PowerShell 56
Object-Based Pipelines 56

A Consistent Verb-Noun Naming Scheme 57
Coping with a Diverse World 58
Upgrade Path to C# 58
Working with Errors 58
Debugging in PowerShell 59
Additional PowerShell Features 59

Extended Wildcards 59
Automatic Variables 60

Summary 62

Chapter 4: Using the Interactive Shell 63

Windows PowerShell’s Two Command Line Parsing Approaches 63
Expression Mode Examples 65
Command Mode Examples 66
Mixing Expressions and Commands 69

02_946939 ftoc.qxp 3/15/07 6:59 PM Page vi

vii

Contents

Exploring a Windows System with Windows PowerShell 69
Finding Running Processes 69
Filtering Processes Using where-object 71
Filtering Processes Using Wildcards 72
Finding Out about Services 73
Finding Running Services 74
Finding Other Windows PowerShell Commands 75

Using Abbreviated Commands 76
Command Completion 76
Aliases 77

Working with Object Pipelines 78
Sequences of Commands 78
Filtering Using where-object 79
Sorting 81
Grouping 83

Pros and Cons of Verbosity 85
Interactive 85
Stored Commands 87

Summary 87

Chapter 5: Using Snapins, Startup Files, and Preferences 89

Startup 89
Snapins 90

Profiles 97
Profile.ps1 98

Aliases 100
The export-alias Cmdlet 105
The get-alias Cmdlet 107
The import-alias Cmdlet 108
The new-alias Cmdlet 108
The set-alias Cmdlet 109
The Help Alias 111
Command Completion 112

Prompts 113
Preference Variables 115
Summary 116

Chapter 6: Parameters 117

Using Parameters 118
Finding Parameters for a Cmdlet 121
Named Parameters 124

02_946939 ftoc.qxp 3/15/07 6:59 PM Page vii

viii

Contents

Wildcards in Parameter Values 125
Positional Parameters 127

Common Parameters 132
Using Variables as Parameters 133
Summary 135

Chapter 7: Filtering and Formatting Output 137

Using the where-object Cmdlet 137
Simple Filtering 138
Using Multiple Tests 140
Using Parameters to where-object 142
The where-object Operators 144

Using the select-object Cmdlet 144
Selecting Properties 145
Expanding Properties 146
Selecting Unique Values 147
First and Last 148

Default Formatting 151
Using the format-table Cmdlet 155

Using the property Parameter 156
Using the autosize Parameter 157
Hiding Table Headers 158
Grouping Output 158
Specifying Labels and Column Widths 159

Using the format-list Cmdlet 161
Using the update-formatdata and update-typedata Cmdlets 162
Summary 163

Chapter 8: Using Trusting Operations 165

Look Before You Leap 166
Using the remove-item Cmdlet 166
Using the whatif Parameter 175

Using the stop-process Cmdlet 175
Using the stop-service Cmdlet 178

Using the confirm Parameter 180
Using the verbose Parameter 181
Summary 182

02_946939 ftoc.qxp 3/15/07 6:59 PM Page viii

ix

Contents

Chapter 9: Retrieving and Working with Data 183

Windows PowerShell Providers 183
Using the get-psdrive Cmdlet 184
Using the set-location Cmdlet 188

Using the passthru Parameter 190
Using the get-childitem Cmdlet 191
Using the get-location Cmdlet 194
Using the get-content Cmdlet 196
Using the measure-object Cmdlet 201
The new-item Cmdlet 203
The new-psdrive Cmdlet 204
Summary 205

Chapter 10: Scripting with Windows PowerShell 207

Enabling Scripts on Your Machine 207
Using the read-host Cmdlet 212
Using the write-host Cmdlet 214
The Arithmetic Operators 218
Operator Precedence 219
The Assignment Operators 220
The Comparison Operators 222
The Logical Operators 225
The Unary Operators 226

Using the set-variable and Related Cmdlets 227
The set-variable Cmdlet 228
The new-variable Cmdlet 229
The get-variable Cmdlet 230
The clear-variable Cmdlet 231
The remove-variable Cmdlet 232

Summary 234

Chapter 11: Additional Windows PowerShell Language Constructs 235

Arrays 235
Creating Typed Arrays 239
Modifying the Structure of Arrays 241
Working from the End of Arrays 245
Concatenating Arrays 248

Associative Arrays 249

02_946939 ftoc.qxp 3/15/07 6:59 PM Page ix

x

Contents

Conditional Expressions 250
The if Statement 251
The switch Statement 254

Looping Constructs 256
The for Loop 256
The while Loop 258
The do/while Loop 259
The foreach Statement 260

Summary 262

Chapter 12: Processing Text 263

The .NET String Class 263
Working with String Methods 267

Casting Strings to Other Classes 287
URI 287
datetime 288
XML 289
Regex 289
Summary 291

Chapter 13: COM Automation 293

Using the new-object Cmdlet 293
Working with Specific Applications 294

Working with Internet Explorer 294
Working with Windows Script Host 299
Working with Word 301
Working with Excel 302
Accessing Data in an Access Database 303
Working with a Network Share 305

Using Synthetic Types 306
Summary 308

Chapter 14: Working with .NET 309

Windows PowerShell and the .NET Framework 309
Creating .NET Objects 311

The new-object Cmdlet 311
Other Techniques to Create New Objects 317

Inspecting Properties and Methods 320
Using the get-member Cmdlet 320

02_946939 ftoc.qxp 3/15/07 6:59 PM Page x

xi

Contents

Using .NET Reflection 324
Using the GetMembers() Method 324
Using the GetMember() Method 326
Using the GetMethods() Method 328
Using the GetMethod() Method 329
Using the GetProperties() Method 330
Using the GetProperty() Method 331
Using System.Type Members 333

Summary 334

Part II: Putting Windows PowerShell to Work 335

Chapter 15: Using Windows PowerShell Tools for Discovery 337

Exploring System State 338
Using the get-location Cmdlet 338
Handling Errors 345
Namespaces 346
PowerShell Aliases 346
PowerShell Functions and Filters 349
PowerShell Variables 350

Exploring the Environment Variables 351
Exploring the Current Application Domain 353
Exploring Services 357
Using the get-service Cmdlet 358

Using the new-service Cmdlet 360
Using the restart-service Cmdlet 361
Using the set-service Cmdlet 362
Using the start-service Cmdlet 362
Using the stop-service Cmdlet 363
Using the suspend-service Cmdlet 364

Summary 365

Chapter 16: Security 367

Minimizing the Default Risk 368
The Certificate Namespace 374
Signed Scripts 376

Creating a Certificate 376
The set-authenticodesignature Cmdlet 377
The get-authenticodesignature Cmdlet 379

Summary 379

02_946939 ftoc.qxp 3/15/07 6:59 PM Page xi

xii

Contents

Chapter 17: Working with Errors and Exceptions 381

Errors in PowerShell 381
$Error 383
Using Error-Related variables 388

Using the $ErrorView variable 389
Using the $ErrorActionPreference variable 390
Trap Statement 392
Using Common Parameters 397

Using the ErrorAction Parameter 397
Using the ErrorVariable Parameter 399

The write-error Cmdlet 400
Summary 401

Chapter 18: Debugging 403

Handling Syntax Errors 403
The set-PSDebug Cmdlet 408
The write-debug Cmdlet 413
Tracing 418
The trace-command Cmdlet 419
The set-tracesource Cmdlet 422
The get-tracesource Cmdlet 422
Summary 423

Chapter 19: Working with the File System 425

Path Names in Windows PowerShell 426
Fully Qualified Path Names 427
Relative Path Names 430
Path Names and Running Commands 431

Simple Tasks with Folders and Files 434
Finding the drives on a system 434
Finding Folders and Files 434
Finding File Characteristics 436
Exploring Files Using the select-object Cmdlet 439

Finding Hidden Files 442
Tab Completion 443
Redirection 445
Creating Custom Drives 447
Cmdlets for File Actions 449

Using the out-file Cmdlet 449

02_946939 ftoc.qxp 3/15/07 6:59 PM Page xii

xiii

Contents

Using Cmdlets to Work with Paths 450
Summary 453

Chapter 20: Working with the Registry 455

Introduction to the Registry 455
Exploring the Registry Using Windows PowerShell 458

Selecting a Hive 458
Navigating to a Desired Key 459

Changing the Registry 461
Summary 464

Chapter 21: Working with Environment Variables 465

Environment Variables Overview 465
The Environment Command Shell Provider 468
Exploring Environment Variables 470
Modifying Environment Variables 471
Summary 473

Part III: Language Reference 475

Chapter 22: Working with Logs 477

Event Log Basics 477
The get-eventlog Cmdlet 480
Summary 494

Chapter 23: Working with WMI 495

Introducing Windows Management Instrumentation 496
Managed Resources 496
WMI Infrastructure 497
CIM Object Manager 498
The CIM Repository 499
WMI Consumers 499
WMI Tools 499

Using the get-wmiobject Cmdlet 502
Finding WMI Classes and Members 506

Exploring a Windows System 509
Characterizing the CPU 509
Finding Memory 510

02_946939 ftoc.qxp 3/15/07 6:59 PM Page xiii

xiv

Contents

Exploring Services 512
Exploring Remote Machines 513

Summary 514

Index 515

02_946939 ftoc.qxp 3/15/07 6:59 PM Page xiv

Introduction

Windows PowerShell version 1.0 is Microsoft’s first step towards a radically new, exciting, powerful,
and comprehensive command line administration tool for Microsoft Windows. For years Windows users
have had to use a very limited command line shell, CMD.exe. But no more! Windows PowerShell intro-
duces a new, more powerful, more flexible, more consistent object-based command line tool and script-
ing language (with a highly consistent syntax). PowerShell is specifically designed to make it possible
for you to do administrative tasks that previously you couldn’t do at all from the command line and to
make many familiar administrative tasks easier. Windows PowerShell can be installed on any machine
that is running Windows Server 2003 (Service Pack 1 or later), Windows XP (Service Pack 2 or later) or
Windows Vista.

Windows PowerShell is based on cmdlets (pronounced commandlets), which are small, modular com-
mands consistently based on a verb-noun naming system. For example the get-process cmdlet
retrieves information about running processes on a machine. You can flexibly combine cmdlets in
pipelines to create custom functionality. Pipelines can be simple or of arbitrary complexity. You choose
how to combine cmdlets to do things that are useful for you. The sky’s the limit, pretty much.

It’s great to be able to run pipelines from the command, line but once you have worked on a complex
pipeline so that it does exactly what you want, you won’t want to discard it. In Windows PowerShell,
you can save your code as scripts (using the same syntax you used on the command line) and run those
scripts from the command line when needed.

Who This Book Is For
This book is intended to help you get up to speed with Windows PowerShell whether you administer
one Windows machine or many thousands. Although the book is in the Wrox Professional series I don’t
assume that you have any previous experience using Windows PowerShell since, for most readers, your
previous experience of PowerShell 1.0 is likely to be zero or minimal. On the other hand, I assume you
are familiar with many basics of how Windows works and generally don’t spend much time telling you
about basic Windows functionality outside PowerShell.

I show you how to use many of the cmdlets available in Windows PowerShell 1.0 and show you how
you can combine cmdlets to create pipelines. I show you how to store your code as scripts and how to
run them.

What This Book Covers
First I spend a little time introducing you to why Windows PowerShell has been created. I look briefly at
how previous Microsoft technologies attempted to help you administer Windows computers, then look
at how Windows PowerShell brings its new and more powerful solutions to existing challenges.

03_946939 flast.qxp 3/15/07 7:00 PM Page xv

xvi

Introduction

I show you how to use PowerShell from the command line, initially using individual cmdlets to carry
out fairly simple tasks. Then I show you how to construct pipelines to carry out more complex tasks. I
then show you how to use parameters to modify the behavior of individual cmdlets. And, of course, how
you can combine cmdlets and their parameters in useful pipelines.

Windows PowerShell can, at times, produce almost unmanageable amounts of information. I show you
techniques that help you to filter output from commands and how to present the data of interest
onscreen.

Once you have mastered the basics of PowerShell, you will want to store your code in script files. I show
you how to store and run scripts and describe and demonstrate many features of the PowerShell lan-
guage.

In the latter part of the book I show you how to use PowerShell to carry out various tasks. I show you
how to use PowerShell to work with text, to automate COM objects and to script .NET, I show you how
to set security for Windows PowerShell and how to make use of PowerShell tools to help you debug
your code.

In the final chapters I show you how you can use PowerShell to work with files, the registry, environ-
ment variables, and logs.

Throughout the book I describe the functionality of many individual cmdlets and show you how you
can use many combinations of cmdlets and parameters.

This book doesn’t attempt to provide comprehensive coverage of what Windows PowerShell can do. In
fact, no book can do that since there is essentially an infinite number of ways to combine PowerShell
cmdlets. The important thing that I have tried to achieve is to show you how to combine the parts avail-
able to you in PowerShell so that you can go on to combine them in the ways that makes most sense for
your needs. However, I intend to cover topics that I couldn’t include in this book in a blog at
www.propowershell.com. I hope to have the site up and running by the time this book is in print. If
you want particular topics to be discussed or demonstrated on the blog contact me through that site and
I will, time permitting, cover the additional topics most frequently requested.

How This Book Is Structured
I have summarized the content of this book in the preceding section. In this section, I briefly suggest
how you might want to use this book depending on your level of experience with PowerShell.

Most readers will come to this book with minimal experience with PowerShell. Therefore, I have written
it so that you can read it from beginning to end, as an extended tutorial if you wish. If you’re completely
new to PowerShell that is probably the best way to use the book.

On the other hand, if you already have some experience with PowerShell the Contents and Index allow
you to dip into chapters or sections that are particularly suitable to your needs, as summarized in the
preceding section of this Introduction.

03_946939 flast.qxp 3/15/07 7:00 PM Page xvi

xvii

Introduction

What You Need to Use This Book
To run Windows PowerShell, you need to have a compatible version of Microsoft Windows installed.
Specifically, you need Windows Server 2003 (Service Pack 1 or later), Windows XP (Service Pack 2 or
later) or Windows Vista.

In addition, before you install and run Windows PowerShell you need to install the .NET Framework
version 2.0. Initial experience with version 3.0 of the .NET Framework suggests that Windows
PowerShell 1.0 also works well with it.

I anticipate that Windows PowerShell will also run on other future versions of Windows, including the
server operating system that is currently codenamed Longhorn Server. However, at the time of writing,
I have not had the opportunity to text PowerShell 1.0 on Longhorn Server.

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ We highlight new terms and important words when we introduce them.

❑ We show keyboard strokes like this: Ctrl+A.

❑ We show filenames, URLs, and code within the text like this: persistence.properties.

❑ I show you code to type at the command line like this:

get-process

or, where code is a pipeline which extends over two or more lines, like this:

get-process |
format-table

❑ We present code in two different ways:

In code examples we highlight new and important code with a gray background.

The gray highlighting is not used for code that’s less important in the present
context, or has been shown before.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

03_946939 flast.qxp 3/15/07 7:00 PM Page xvii

xviii

Introduction

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using the
Search box or by using one of the title lists), and click the Download Code link on the book’s detail page
to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-471-94693-9.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can view all
errata that has been submitted for this book and posted by Wrox editors. A complete book list including
links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check the
information and, if appropriate, post a message to the book’s errata page and fix the problem in subse-
quent editions of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will find a number of different forums that will help you not only as
you read this book but also as you develop your own applications. To join the forums, just follow these
steps:

03_946939 flast.qxp 3/15/07 7:00 PM Page xviii

xix

Introduction

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

In addition to the facility at p2p.wrox.com I hope to provide content to complement this book in a blog
at www.propowershell.com. I hope to have the site up and running by the time this book is in print.

03_946939 flast.qxp 3/15/07 7:00 PM Page xix

Acknowledgments

Any complex task, including the creation and production of a computer book, is a team effort and I
would like to thank several individuals who have helped me produce this book. The book has been a
long time in gestation in part due to the timescale of the development of Windows PowerShell 1.0 but in
part due to pressures on my time around important milestones. I would like to thank everyone for their
patience through a long process.

First, I would like to thank Chris Webb, Executive Editor at Wrox who invited me to write the book.

I would also like to thank Tom Dinse, senior development editor at Wrox, who helped mold my draft
text in useful ways, made many helpful suggestions along the way and kept me right about series
guidelines.

The technical editors had a hard time, since I wrote several different drafts against intermediate develop-
ment builds of PowerShell. Over the months, the development team at Microsoft made many changes to
help improve the product, but each time they changed cmdlet and parameter names there was a whole
series of changes across multiple chapters to be identified by the author and technical editors. I would
particularly like to thank Joel Stidley whose comments on later drafts were invariably pertinent and who
picked up a good number of changes that I had missed as I went through chapters to reflect changes in
the final release of Windows PowerShell 1.0. Thomas Lee did a manful job of working with earlier drafts.
Any remaining errors or omissions are my own responsibility.

03_946939 flast.qxp 3/15/07 7:00 PM Page xx

Part I

Finding Your Way
Around Windows

PowerShell

Chapter 1: Getting Started with Windows PowerShell

Chapter 2: The Need for Windows PowerShell

Chapter 3: The Windows PowerShell Approach

Chapter 4: Using the Interactive Shell

Chapter 5: Using Snapins, Startup Files, and Preferences

Chapter 6: Parameters

Chapter 7: Filtering and Formatting Output

Chapter 8: Using Trusting Operations

Chapter 9: Retrieving and Working with Data

Chapter 10: Scripting with Windows PowerShell

Chapter 11: Additional Windows PowerShell Language Constructs

Chapter 12: Processing Text

Chapter 13: COM Automation

Chapter 14: Working with .NET

04_946939 pt01.qxp 3/15/07 7:00 PM Page 1

04_946939 pt01.qxp 3/15/07 7:00 PM Page 2

Getting Started with
Windows PowerShell

If you are like me, then when you begin to look seriously at an interesting piece of software, you
like to get your hands dirty and play with it from the beginning. In this chapter, I show you how
to get started using Windows PowerShell, and I’ll show you enough of the PowerShell commands
to let you begin to find your way around effectively. In the rest of the book, I help you build on
that initial knowledge so that you can use PowerShell for a wide range of useful tasks, depending
on your requirements.

Windows PowerShell, as you probably already know, is Microsoft’s new command shell and
scripting language. It provides a command line environment for interactive exploration and
administration of computers, and by storing and running Windows PowerShell commands in a
script file, you can run scripts to carry out administrative tasks multiple times. Windows
PowerShell differs in detail from existing command line environments on the Windows and Unix
platforms, although it has similarities to past environments. In Chapter 3, in particular, I explain
more about the PowerShell approach, although differences from existing command shells and
scripting languages will emerge in every chapter.

Once you have had a brief taste of PowerShell, you will need to understand a little of the assump-
tions and approach that lie behind the design decisions that have made PowerShell the useful tool
that it is. In Chapter 2, I step back from using the PowerShell command line and look at the
strengths and deficiencies of some existing Microsoft approaches to system management and then,
in Chapter 3, take a look at the philosophy and practical thought that lies behind the approach
taken in Windows PowerShell.

Installing Windows PowerShell
Windows PowerShell depends on the presence of the .NET Framework 2.0. Before you install
PowerShell, you need to be sure that you have the .NET Framework 2.0 installed.

05_946939 ch01.qxp 3/15/07 7:00 PM Page 3

Installing .NET Framework 2.0
At the time of writing, the 32-bit version of the .NET Framework 2.0 runtime is available for download-
ing from www.microsoft.com/downloads/details.aspx?FamilyID=0856eacb-4362-4b0d-8edd-
aab15c5e04f5&displaylang=en.

If you are using 64-bit Itanium processors, download the .NET Framework 2.0 runtime from www.microsoft
.com/downloads/details.aspx?familyid=53C2548B-BEC7-4AB4-8CBE-33E07CFC83A7&display-
lang=en. Windows PowerShell is only available on Windows Server 2003 for Itanium processors.

If you are using AMD 64-bit processors, download the runtime from www.microsoft.com/downloads/
info.aspx?na=47&p=3&SrcDisplayLang=en&SrcCategoryId=&SrcFamilyId=F4DD601B-1B88-
47A3-BDC1-79AFA79F6FB0&u=details.aspx%3ffamilyid%3dB44A0000-ACF8-4FA1-AFFB-40E78D
0788B00%26displaylang%3den.

If you are unsure whether or not you have .NET Framework 2.0 installed, navigate to C:\Windows\
Microsoft.NET\Framework (if necessary substitute another drive letter if your system drive is not
drive C:). In that folder you will find folders that contain the versions of the .NET Framework that are
installed on your machine. If you see a folder named v2.0.50727, then you have the .NET Framework
2.0 installed. The .NET Framework 2.0 SDK, which you can download separately, is useful as a source
of information on .NET 2.0 classes that you can use with PowerShell.

Figure 1-1 shows what you would expect to see in the Framework folder on a clean install of Windows
2003 Service Pack 1 which does not have the .NET Framework 2.0 runtime installed.

Figure 1-1

If you want to install the 32 bit .NET Framework 2.0 Software Development Kit
(SDK), download it from www.microsoft.com/downloads/details.aspx?
FamilyID=fe6f2099-b7b4-4f47-a244-c96d69c35dec&displaylang=en. To
install the .NET Framework 2.0 SDK, you must first install the 32-bit runtime.

There are also 64-bit versions of the .NET Framework 2.0 SDK available for down-
loading. The version of the runtime for Itanium is located at www.microsoft.com/
downloads/details.aspx?familyid=F4DD601B-1B88-47A3-BDC1-79AFA79F6
FB0&displaylang=en. The 64-bit version for AMD processors is located at www
.microsoft.com/downloads/details.aspx?familyid=1AEF6FCE-6E06-4B66-
AFE4-9AAD3C835D3D&displaylang=en.

4

Part I: Finding Your Way Around Windows PowerShell

05_946939 ch01.qxp 3/15/07 7:00 PM Page 4

Figure 1-2 shows the appearance of the Framework folder on a clean install of Windows 2003 Service
Pack 1 after the .NET Framework 2.0 runtime has been installed.

Figure 1-2

You don’t need to delete the v1.0.3705 or v1.1.4322 folders. In fact, you are likely to cause problems for
applications that need earlier versions of the .NET Framework if you delete those folders. The .NET
Framework 2.0 is designed to run side by side with .NET Framework 1.0 and 1.1.

To install the .NET Framework 2.0, follow these steps.

1. Navigate in Windows Explorer to the folder where you downloaded the installer,
dotnetfx.exe.

2. Double-click the installer. On the splash screen that opens, click Next.

3. On the EULA screen, accept the license agreement and click Install.

4. The installer then proceeds to install the .NET Framework 2.0, as shown in Figure 1-3.

5. When the installation has completed successfully, you should see a screen similar to Figure 1-4.

6. If you have Internet connectivity, click the Product Support Center link shown in Figure 1-4 to
check for any updates.

5

Chapter 1: Getting Started with Windows PowerShell

05_946939 ch01.qxp 3/15/07 7:00 PM Page 5

Figure 1-3

Figure 1-4

6

Part I: Finding Your Way Around Windows PowerShell

05_946939 ch01.qxp 3/15/07 7:00 PM Page 6

Once you have installed the .NET Framework 2.0, you can then install Windows PowerShell.

Installing Windows PowerShell
To install Windows PowerShell on a 32-bit system, follow these steps. If you are installing it on a 64-bit
system, the installer filename will differ.

1. Double-click the .exe installer file appropriate for the version of Windows PowerShell you
want to install. The initial screen of the installation wizard, similar to the one shown in Figure
1-5, is displayed.

Figure 1-5

2. Click Next.

3. Accept the license agreement and click Next.

4. If you are installing on drive C: on a 32-bit system, the default install location is
C:\Windows\System32\windowspowershell\v1.0.

5. When the installation has completed successfully you will see a screen similar to Figure 1-6.

6. Click Finish.

7

Chapter 1: Getting Started with Windows PowerShell

05_946939 ch01.qxp 3/15/07 7:00 PM Page 7

Figure 1-6

Starting and Stopping PowerShell
Once you have installed Windows PowerShell, you have several options for starting it.

Starting PowerShell
To start PowerShell without using any profile file to customize its behavior, open a command window
(On Windows 2003, select Start ➪ All Programs ➪ Accessories ➪ Command Prompt), then type:

%SystemRoot%\system32\WindowsPowerShell\v1.0\powershell.exe -NoProfile

After a short pause, the Windows PowerShell prompt should appear (see Figure 1-7).

Figure 1-7

If you are still using a Release Candidate and attempt to start PowerShell by simply typing PowerShell
.exe at the command shell prompt, you may see the error message shown in Figure 1-8. To fix that,
update to the final release version.

8

Part I: Finding Your Way Around Windows PowerShell

05_946939 ch01.qxp 3/15/07 7:00 PM Page 8

Figure 1-8

Alternatively, you can start PowerShell by selecting Start ➪ All Programs ➪ Windows PowerShell 1.0 ➪

Windows PowerShell (see Figure 1-9).

Figure 1-9

Because of security concerns about previous Microsoft scripting technologies, the default setting of
Windows PowerShell is that scripting is locked down. Specifically, when Windows PowerShell starts, it
does not attempt to run profile files (which are PowerShell scripts) that contain various settings control-
ling how PowerShell should run. Whichever way you start PowerShell initially, you will probably later
want to enable scripts. To do that, you use the set-executionpolicy cmdlet. Type:

set-executionpolicy –ExecutionPolicy “RemoteSigned”

and you will be able to run locally created scripts without signing them. I cover execution policy in more
detail in Chapter 10.

9

Chapter 1: Getting Started with Windows PowerShell

05_946939 ch01.qxp 3/15/07 7:00 PM Page 9

There are several additional options for starting PowerShell, and I will briefly describe all of those —
after I show you how to stop PowerShell.

Exiting PowerShell
To stop PowerShell, simply type the following at the PowerShell command line:

Exit

and you are returned to the CMD.exe command prompt (assuming that you started PowerShell from the
CMD.exe prompt). If you started PowerShell using Start ➪ All Programs ➪ Windows PowerShell 1.0 ➪

Windows PowerShell, the PowerShell window closes.

You can’t use “quit” to exit PowerShell. It just causes an error message to be displayed.

Startup Options
You have several options for how you start PowerShell. These are listed and explained in the following
table. On the command line, each parameter name is preceded by a minus sign.

Parameter Explanation

Command The value of the Command parameter is to be executed as if it were typed at a
PowerShell command prompt.

Help Displays information about the startup options for PowerShell summarized in
this table.

InputFormat Specifies the format of any input data. The options are “Text” and “XML.”

NoExit Specifies that PowerShell doesn’t exit after the command you enter has been
executed. Specify the NoExit parameter before the Command parameter.

NoLogo The copyright message usually displayed when PowerShell starts is omitted.
Specifying this parameter causes the copyright message not to be displayed.

NonInteractive Use this parameter when no user input is needed nor any output to the
console.

NoProfile The user initialization scripts are not run.

OutputFormat Specifies the format for outputting data. The options are “Text” and “XML.”

PSConsoleFile Specifies a Windows PowerShell console file to run at startup.

To view information about all help options, type:

%SystemRoot%\system32\WindowsPowerShell\v1.0\powershell.exe -Help

or:

%SystemRoot%\system32\WindowsPowerShell\v1.0\powershell.exe -?

10

Part I: Finding Your Way Around Windows PowerShell

05_946939 ch01.qxp 3/15/07 7:00 PM Page 10

or:

%SystemRoot%\system32\WindowsPowerShell\v1.0\powershell.exe /?

at the command line. Each of those commands will cause the information, part of which is shown in
Figure 1-10, to be displayed.

Figure 1-10

Notice that there are sets of parameters that you can use with PowerShell.exe. You can combine
parameters only in the ways shown in Figure 1-10.

The preceding commands give you help on how to start Windows PowerShell. Once you start
PowerShell, you also need to know where to find help on individual PowerShell commands. As a first
step, you need to be able to find out what commands are available to you.

Individual PowerShell commands are small and granular. As a result, they are called cmdlets (pronounced
“commandlets”).

Finding Available Commands
In this section, I will show you a few commonly used commands and show you how to explore the
PowerShell cmdlets to see what PowerShell commands are available on your system. The get-command
cmdlet allows you to explore the commands available to you in Windows PowerShell.

The simplest, but not the most useful, way to use the get-command cmdlet is simply to type:

get-command

at the PowerShell command line. Several screens of command names scroll past when you do this —
there are a lot of cmdlets in PowerShell. It’s more useful to view the information one screen at a time.
You achieve that by typing:

get-command | More

11

Chapter 1: Getting Started with Windows PowerShell

05_946939 ch01.qxp 3/15/07 7:00 PM Page 11

at the PowerShell command line. The result is similar to that shown in Figure 1-11. If you run that com-
mand and carefully read the available commands, you will get some idea of the scope of functionality
that PowerShell allows you to control and manage.

Figure 1-11

To view another screen of commands, press the spacebar once. Repeat this to view each additional
screen of commands.

PowerShell commands are formed of a verb, followed by a hyphen (or minus sign), followed by a noun.
The get-command cmdlet illustrates the structure. The verb “get” is followed by a hyphen, which is
followed by a noun “command.” PowerShell uses the singular form of the noun, even when, as is often
the case, you want to find multiple items that satisfy your requirements. Thus, you might use
get-process to get all the processes running on a system, as opposed to get-processes.

You can use wildcards to focus your search for the relevant command. For example, to find all com-
mands that use the get verb, use the following command:

get-command get-*

or, the slightly tidier:

get-command get-* | More

The argument to the get-command cmdlet uses the * wildcard. The argument get-* finds any com-
mand whose name begins with get, a hyphen, and zero or more other characters. As you can see in
Figure 1-12, there are many cmdlets that use the get verb.

12

Part I: Finding Your Way Around Windows PowerShell

05_946939 ch01.qxp 3/15/07 7:00 PM Page 12

Other verbs worth looking for include add, format, new, set, and write. To see a complete list of avail-
able verbs, type the following command:

get-command | group-object verb

Figure 1-13 shows the results. The preceding command uses a pipeline that consists of two steps. The
first uses the get-command cmdlet to create objects representing all available commands. The second
step uses the group-object cmdlet to group the results by the verb.

Figure 1-12

Figure 1-13 13

Chapter 1: Getting Started with Windows PowerShell

05_946939 ch01.qxp 3/15/07 7:00 PM Page 13

To find the nouns available in your installation of PowerShell, use the following command:

get-command | group-object noun

If you want to sort the nouns alphabetically use the following command:

get-command | group-object noun | sort-object name

You can also use the get-command cmdlet to explore in other ways. For example, suppose that you want
to find all cmdlets that you can use to work with processes. The preceding command shows you that
process is one of the nouns used in cmdlets. One way to display information about all cmdlets that
operate on processes is to use the following command:

get-command *-process

Figure 1-14 shows you that there are only two cmdlets that you can use to work specifically with pro-
cesses. As you construct pipelines with multiple steps, you have many other cmdlets available for use
with process-related information.

Figure 1-14

You can adapt the preceding command to find cmdlets relevant to other nouns. For example, the
command:

get-command *-service

will find all cmdlets that relate to services.

Getting Help
When you’re using PowerShell, you need to be able to find out how to use commands that you are
already aware of or that you find by using the techniques described in the previous section.

You use the get-help cmdlet to get help information about individual cmdlets. You can use the get-
help cmdlet with or without parameters. Using the get-help cmdlet with no parameters displays
abbreviated help information.

14

Part I: Finding Your Way Around Windows PowerShell

05_946939 ch01.qxp 3/15/07 7:00 PM Page 14

For example, to get help on the get-process cmdlet type either:

get-help get-process

or:

get-process -?

at the PowerShell command line.

The default behavior of the get-help cmdlet when providing help information about a specific com-
mand is to dump all the help text to the screen at once, causing anything that won’t fit on one screen to
scroll off the screen and out of sight. You may find it more useful to display the help information one
screen at a time by using More:

get-help get-process | More

or:

get-process -? | More

You are likely to have the help function available to you. It behaves similarly to the get-help cmdlet,
except that the help function displays the help information one screen at a time. To display the help
information for the get-process cmdlet one screen at a time, you can type:

help get-process

Since that is a little shorter to type than the get-help syntax, you may find that it’s more convenient.

PowerShell displays help information in a way similar to man in Unix. The help for each command or
other piece of syntax is structured in the following sections:

❑ Name – The name of the cmdlet

❑ Synopsis – A brief text description of the cmdlet

❑ Syntax – Demonstrates how the cmdlet can be used

❑ Detailed Description – A longer text description of the cmdlet

❑ Parameters – Provides detailed information about how to use each parameter

❑ Input Type – Specifies the type of the input object(s)

❑ Return Type – Specifies the type of the returned object

❑ Examples – Examples of how to use the cmdlet

❑ Related Links – Names of other cmdlets with related functionality

❑ Remarks – Information about using parameters with the cmdlet

For some commands, some sections may contain no help information.

15

Chapter 1: Getting Started with Windows PowerShell

05_946939 ch01.qxp 3/15/07 7:00 PM Page 15

When you use no parameter with the get-help cmdlet, you see the following sections of information:

❑ Name

❑ Synopsis

❑ Syntax

❑ Detailed Description

❑ Related Links

❑ Remarks

If you use the –detailed parameter, for example:

get-help get-process –detailed

you see the following sections of help information:

❑ Name

❑ Synopsis

❑ Syntax

❑ Detailed Description

❑ Parameters

❑ Examples

❑ Remarks

If you use the –full parameter, for example:

get-help get-process –full

you see the following sections of help information:

❑ Name

❑ Synopsis

❑ Syntax

❑ Detailed Description

❑ Parameters

❑ Input Type

❑ Return Type

❑ Notes

❑ Examples

❑ Related Links

16

Part I: Finding Your Way Around Windows PowerShell

05_946939 ch01.qxp 3/15/07 7:00 PM Page 16

In addition to the built-in help about cmdlets, you can also access help about aspects of the PowerShell
scripting language using the get-help cmdlet. If you don’t know what help files on the language are
available, use the command:

get-help about_* | more

to display them. Figure 1-15 shows one screen of results. This works, since each of these help files begins
with about_.

Figure 1-15

An alternative way to explore the available help files for an install on 32-bit hardware is to open Windows
Explorer, navigate to the folder C:\Windows\System32\WindowsPowerShell\v1.0, and look for text
files whose name begins with about. If your system drive is not drive C: modify the path accordingly.

Basic Housekeeping
On the surface, a lot of PowerShell works in the same way as CMD.exe. In this section, I describe a couple
of basic commands that you will likely use frequently.

To clear the screen, you can type:

clear-host

or:

clear

17

Chapter 1: Getting Started with Windows PowerShell

05_946939 ch01.qxp 3/15/07 7:00 PM Page 17

or:

cls

at the PowerShell command line.

To repeat the last-used PowerShell command, press the F3 key once.

To cycle through recently used PowerShell commands, press the up arrow as necessary to move back to
the command that you want to reuse or to adapt. You can also use the get-history cmdlet to see the
command history. By default, you will be able to see the last 64 commands, but if you or an administra-
tor has modified the value of the $MaximumHistoryCount variable, the number of commands available
in the history may differ.

At the risk of stating the obvious, PowerShell offers you a number of ways to review information that
has scrolled out of sight by using the scroll bars in the PowerShell command window. Click in the scroll
bar area or drag the slider in the scroll bar area to move up and down through the information in the
PowerShell console window.

Case Insensitivity
In PowerShell, cmdlet names are case-insensitive. In general, cmdlet parameter information is generally
also case-insensitive, although there are cases where this is not the case.

All PowerShell cmdlet names, in the verb-noun form are case-insensitive. Similarly, all named parameters
have parameter names that are case-insensitive. For example, to retrieve information about available
commands you can use:

get-command

or:

Get-Command

or any other variant of the name using mixed case.

The Windows operating system does not consider case significant in filenames. So, any time that you use
a filename as an argument to a PowerShell command, case is not significant by default. For example, to
redirect the current date and time to a file named Text.txt on drive C:, use the following command,
which includes redirection:

get-date > C:\Test.txt

The > character is the redirection operator, which redirects output from the screen (the default) to some
specified target — in this case, a file on drive C:.

An exception to the general rule of no case-sensitivity is when you use class names from the .NET
Framework. PowerShell allows you work directly with classes from the .NET Framework. I discuss this
in more detail in Chapter 13.

18

Part I: Finding Your Way Around Windows PowerShell

05_946939 ch01.qxp 3/15/07 7:00 PM Page 18

What You Get in PowerShell
On the surface, PowerShell simply appears to be a new command shell, but you get a highly flexible
scripting language with it, too. The following sections describe aspects of the PowerShell package and
provide some simple examples of how you can use it.

Interactive Command Shell
As I showed you earlier in the chapter, PowerShell comes complete with a range of commands, called
cmdlets, that you can use interactively. By combining these commands in pipelines, you can filter, sort,
and group objects. Pipelines are a way of combining commands. They have the general form:

command1 | command2

where each step of the pipeline may contain a PowerShell cmdlet, often using multiple parameters. The
| character is used to separate the steps of a pipeline. A pipeline can be of arbitrary length.

In the rest of this book, I demonstrate some of the neat tricks you can use to take advantage of pipelines
to manage your system.

The following command is a three-step pipeline that retrieves information about running processes,
sorts it by process name, and displays selected parts of the results in a table.

get-process svchost |
sort-object ProcessName |
format-table ProcessName, Handlecount

As you can see in Figure 1-16, you can type the pipeline on a single line. In this book, I will generally
present multistep pipelines on multiple lines, since that makes it easier for you to see what each step of
the pipeline is doing.

Figure 1-16

If you prefer, you can type each step of multistep pipelines on separate lines on the command line,
which I show you in Figure 1-17. Notice that each step of the pipeline except the last ends in the pipe
character (|) and that the command prompt changes to >>. After you type the last step of the pipeline,
press Return twice and the command will be executed as if you had typed it all on a single line.

19

Chapter 1: Getting Started with Windows PowerShell

05_946939 ch01.qxp 3/15/07 7:00 PM Page 19

Figure 1-17

Often, you will use the final step of a pipeline to choose how to display information. However, that’s not
essential, since there is default formatting of output. However, you can use formatting commands as the
final step in a pipeline to customize the display and produce a desired output format.

Cmdlets
In a default install of PowerShell version 1, you get more than 100 cmdlets. I look at these individually in
more detail in Chapter 4 and later chapters.

If you want to count the number of cmdlets in your version of PowerShell, you can type the following at
the command line:

$a = get-command;$a.count

or:

$a = get-command
$a.count

or:

$(get-command).count

The semicolon is the separator when you enter multiple PowerShell commands on one line. Alternatively,
you can simply enter each PowerShell command on a separate line. As you can see in Figure 1-18, in the
version I was using when I wrote this chapter, there were 129 cmdlets available to me. The figure you see
may vary significantly, depending on whether additional cmdlets have been installed on your system.

Figure 1-18

20

Part I: Finding Your Way Around Windows PowerShell

05_946939 ch01.qxp 3/15/07 7:00 PM Page 20

The first part of the command is an assignment statement:

$a = get-command

which assigns all the objects returned by the get-command cmdlet to the variable $a.

The second part of the command:

$a.count

uses the count property of the variable $a to return the number of cmdlets assigned earlier to $a. The
default output is to the screen so the value of the count property is displayed on screen.

Scripting Language
PowerShell provides a new scripting language for the administration of Windows systems. Anything
that you type at the command line can be stored as a PowerShell script and reused, as required, at a later
date. Often, you will use PowerShell commands in an exploratory way on the command line to define
and refine what you want to do. Once you have got things just right, you can store the commands in a
PowerShell script and run the script at appropriate times.

In this example, you test a combination of commands on the command line with a view to saving them
later as a simple script.

For example, suppose that you want to store in a text file the number of processes running on a machine
together with date and time. You could do this by running the following commands, one at a time, on
the command line:

1. First, assign to the variable $a the result of running the get-process cmdlet:

$a = get-process

2. Then assign to the variable $b the value returned from the get-date cmdlet:

$b = get-date

3. Then concatenate a label with the count of processes with the data and time converted to a
string and assign the string to the variable $c:

$c = “Process Count: “ + $a.count + “ at “ + $b.ToString()

4. To keep an eye on the current value of $c, write it to the host:

write-host $c

5. Then write the value of $c to a text file:

set-content C:\StoreCountAndDate.txt $c

6. After doing this, use the following command to show the current information in the text file:

get-content C:\StoreCountAndDate.txt

21

Chapter 1: Getting Started with Windows PowerShell

05_946939 ch01.qxp 3/15/07 7:00 PM Page 21

The result of this simple exploration is shown in Figure 1-19. The result displayed depends on how
many times you have run the commands and at what times.

Figure 1-19

The get-process command returns all active processes on the machine.

The get-date cmdlet returns the current date and time.

You use the count property of the variable $a to return the number of processes that are active, then use
string concatenation and assign that string to $c. The ToString() method of the datetime object con-
verts the date and time to a string.

The set-content cmdlet adds information to the specified file. The get-content cmdlet retrieves the
information contained in the specified text file. The default output is to the screen.

Once you have decided that the individual commands give the desired result — in this case, adding a
count of active processes together with a date and time stamp to a selected text file — you can create a
script to be run at appropriate times. To run the script, you need to enable script execution as described
earlier in this chapter.

The following script, StoreCountAndDate.ps1, stores a count of active processes on a machine
together with the current datetime value.

1. Open Notepad, or your other favorite editor, and type the following code:

$a = get-process
$b = get-date
$c = “Process Count: “ + $a.count + “ at “ + $b.ToString()
write-host $c
set-content C:\StoreCountAndDate.txt $c
get-content C:\StoreCountAndDate.txt

2. Save the code in the current folder as StoreCountAndDate.ps1. The file extension for
PowerShell version 1 scripts is .ps1. If you use Notepad, enclose the filename in quotation
marks or Notepad will save the code as StoreCountAndDate.ps1.txt, which you won’t be
able to run as a PowerShell script.

3. Run the code by typing:

.\StoreCountAndDate

at the command line. This works even if the folder has not been added to the PATH environment
variable.

22

Part I: Finding Your Way Around Windows PowerShell

05_946939 ch01.qxp 3/15/07 7:00 PM Page 22

The result should look similar to Figure 1-20.

Figure 1-20

To run a PowerShell script in the current directory from the command line, type a period and a back-
slash followed by the name of the file (with or without the ps1 suffix).

If your script is in the current working folder, just typing the script name does not work. This is because,
with PowerShell, the current working folder (i.e., “.”) is not part of the path. To run a script from the cur-
rent folder, you have to explicity state the folder name. For example: C:\PowerShellScripts\
StoreCountAndDate.ps1 or .\script.ps1.

If you have difficulty running the script, it may be that running unsigned PowerShell scripts is not
allowed on the computer you are using. If you follow the suggestion earlier in this chapter to set the exe-
cution policy to RemoteSigned, the script should run. Alternatively, you will need to sign the script in a
way acceptable to your organization. I discuss signing scripts in Chapter 15

Summary
Windows PowerShell is a new command shell and scripting language for the Windows platform. This
chapter showed you how to install the .NET Framework 2.0 and how to install Windows PowerShell.

In this chapter, you also learned how to carry out the following tasks:

❑ Start PowerShell

❑ Exit PowerShell

❑ Find out what PowerShell commands are available on your system

❑ Get help on individual PowerShell commands

❑ Develop and run a simple PowerShell script

You can, of course, create much more complex scripts in PowerShell than the example I showed in this
chapter. Before going on, in Chapter 4, to begin to look in more detail at how some individual cmdlets
can be used, I will step aside in Chapter 2 to look at the broader of issues of what is lacking in existing
approaches and in Chapter 3 go on to look at the Windows PowerShell approach to improving on what
was previously available.

23

Chapter 1: Getting Started with Windows PowerShell

05_946939 ch01.qxp 3/15/07 7:00 PM Page 23

05_946939 ch01.qxp 3/15/07 7:00 PM Page 24

The Need for Windows
PowerShell

In this chapter, I briefly look at how Windows command line tools developed and some of the reasons
why a new command shell and scripting language are needed on the Windows platform. In Chapter 3,
I discuss some aspects of the approach that Windows PowerShell takes, with the aim of improving on
the current command shell and scripting languages available on the Windows platform.

Windows PowerShell wasn’t created in a vacuum. It has been created to fill a business need to
allow administrators to work more effectively than the current command line and scripting tools
on the Windows platform. Let’s look at why Windows command line tools have been relatively
neglected for years and why there was a business need for a better tool.

The world of computing is changing fast. In a business context, there is increasing pressure to get
more work done faster and to do that work for the same or less cost. Twenty years ago, personal
computers were just that — personal. It was good enough, in fact, it was pretty amazing at the time,
to be able to process text (for example, in Word), business numbers (for example in Lotus 1-2-3), and
data (for example, in dBASE) on a personal computer. The simple fact that one individual could
work with information (whatever file format it happened to be stored in) was a huge step forward
over the typewriter or adding machine (remember those?) that preceded the personal computer. In
those days, only a small number of employees had a computer, and they tended to work alone, or
if data was shared at all it was handed round on 5.25” floppy disks. Often information exchange
would be on paper. Information from one program would be printed out on paper and read by a
colleague. If that colleague needed to use that data in some program that he used, very often the
data had to be entered into his program. Rekeying of data was an accepted evil in many busi-
nesses, simply because there was no practical way (other than at enormous cost) of moving data
around between software packages.

Each user of a personal computer had, essentially, his or her own empire. They had autonomy (at
least to some extent) about which programs were installed on their computer, how they config-
ured the machine and its software to suit their personal way of working, and when, or if, software

06_946939 ch02.qxp 3/15/07 7:01 PM Page 25

was updated. Since such users, typically, had no electronic data contact with other users in the same
company or in other companies, it wasn’t necessary to impose consistency about the configuration of the
computer and its software. So tools, particularly command line tools, on DOS machines often focused on
allowing a single user to carry out basic tasks appropriate to a single user using a single unconnected
computer. In other words, the command line tools solved the problems that a single user needed to have
solved. In the personal computer world at that time, many of the concepts that apply to networked com-
puters, which we take for granted today, were unknown to most users.

Many users were almost hobbyists in their attitude, and many would dabble in command line tools and
writing simple batch files, with each user often essentially being his or her own computer administrator.
Nobody in those days had high expectations of usability from a personal computer, although they had
improved usability compared to many larger predecessor systems. A personal computer was useful, but
you had to fight it at times to get anything done. As time went on and increasing numbers of users
wanted only to use a computer to get things done rather than spend time learning arcane (in their per-
ception) commands and tweaking settings to get necessary tasks done, the usability limitations of com-
mand line tools became more obvious.

In the context of situations such as those I described in the preceding paragraphs, a move to a graphical
user interface (GUI) had significant benefits for many users, since the interface was relatively simple and
consistent to use. Microsoft seized a market opportunity, in part created by the difficulties many users
found in mastering command line tools and in part created by the poor support from IBM for early ver-
sions of the OS/2 operating system. The sheer ease of use of early versions of Windows (despite its
many limitations) created a rapidly expanding market opportunity for Microsoft, in both the operating
system and application spaces. Of course, the move to event-driven programming also allowed users to
work in a way that suited their circumstances or needs, which was simply impossible with the earlier
DOS paradigm. In that context, a graphical user interface made a lot of sense (and it still does) for a sin-
gle user. But as the number of computer users increased markedly and the networking of computers
became more common, the issue of how to manage large number of machines has taken on increasing
importance. In other words, graphical user interfaces had problems in scaling. For example, taking six
clicks to carry out a task on one machine was fine. Six thousand clicks to do the task on one thousand
machines was, and is, a problem.

As is well known, Microsoft made huge amounts of money from Windows and Windows-based applica-
tions. It was natural, therefore, that the company focussed on graphical-user-interface-based applica-
tions and tools. As a result Microsoft’s command line tools have developed little from the DOS-based
command line tools of a decade or two ago.

However, the world was moving on. Increasing numbers of personal computers were networked.
Companies wanted to take increasing control of how individual computers, no longer so “personal,”
were configured. What had been genuinely a personal computer became more of a business machine. At
first the advantages of standardized computing were perceived as affordable because software was
changed infrequently. A gap of a few years between versions of software (at least those bought by a par-
ticular company) worked fairly well. It was expensive, but the economy in many Western countries
made such an approach possible. But with changes in the global economy and national economies, there
has been increasing pressure to reduce the costs of configuring, maintaining, and monitoring computers.
It doesn’t make any economic sense for a paid employee to travel around a work site manually configur-
ing computers at frequent intervals. Of course, that sometimes tedious task isn’t always avoidable, but
it’s economically a good thing to avoid if it’s technically possible. Issues like these have provided a busi-
ness case for Microsoft to improve its existing command line tools.

26

Part I: Finding Your Way Around Windows PowerShell

06_946939 ch02.qxp 3/15/07 7:01 PM Page 26

Today, as networked computers become the norm, it is increasingly important that all computers on a net-
work can be managed by administrators without those administrators walking around office buildings or
travelling between sites to do so. And, where appropriate, the administrators should be able remotely to
find out the state and modify the configuration of those machines to conform to some enterprise standard
or be updated in a controlled and tested way. With the command lines tools before PowerShell, adminis-
trators were very limited in what they could do to manage Windows machines, at least with the tools that
were part of the Windows distributions or were free. Until PowerShell, at least in the Windows world,
effective command line support for administrators tended to slip between the cracks.

Limitations of CMD.exe
The traditional Windows command shell hasn’t changed fundamentally since the days of DOS, although
as time has passed some new commands have been added to it. CMD.exe allows a user or administrator
to carry out simple tasks such as listing the files in a directory using the dir command or format a disk
using the format command, but it certainly doesn’t provide anything remotely like a comprehensive
tool to administer a single Windows machine. Many tasks that you want to carry out on your machine
can only be done using the Windows graphical user interface. In fact, it’s not one graphical user interface
that you need to master. You need to use several tools to get a job done.

If it’s a task that one user does once or only occasionally, then the GUI tools save the user the time it
would take to learn the details of multiple command line commands. However, when it comes to trying
to administer dozens, hundreds, or thousands of machines, then CMD.exe simply doesn’t even come
close to having what it takes to get the job done. Admittedly, some commands, such as AT, allow you to
run a command on a remote computer, so you’re not totally confined to administering a single machine.
But the coverage an administrator needs is far from adequate with CMD.exe.

The relative poverty of functionality in CMD.exe isn’t too surprising. Microsoft’s focus was elsewhere in
developing GUI tools. One problem that Windows was intended to solve was the need for users to
remember huge numbers of potentially unfriendly switches and arguments that DOS commands
needed. If the aim of Windows and its GUI tools is to avoid users having to learn command line com-
mands, then why provide tools that require learning what you’re trying to help users avoid? For users
managing a single machine (if they actively manage any machine at all), a graphical user interface’s con-
sistency and relative simplicity of interaction is a potentially significant step forward for many users.
However, when you need to manage hundreds or thousands of machines, a graphical tool becomes a
tedious bore, with click following repetitive click. For businesses with large numbers of computers, such
an approach is not only inefficient but expensive.

The Windows NT (and later) command line utility, CMD.exe, replaced the DOS and
Windows 9X Command.com. Visually and functionally the changes were minor,
although over time a significant number of commands were added. In practice, neither
utility allowed a user or administrator to carry out anything other than relatively
minor tasks. CMD.exe, like its DOS predecessor, was designed largely in the context of
a single machine rather than a network of large numbers of interconnected machines.

27

Chapter 2: The Need for Windows PowerShell

06_946939 ch02.qxp 3/15/07 7:01 PM Page 27

Ease of administration of multiple machines is likely to have been one of several factors in why Linux
and similar operating systems have begun to eat into Microsoft’s markets, not the least in the server sec-
tor. In that context, PowerShell can be seen a defensive move by Microsoft to provide a flavor of
Windows that attempts to take back the administrative high ground.

If you need convincing of the limitations of CMD.exe, take a look at the commands that are available. To
view all available commands in the existing Microsoft command line shell, simply type Help at the com-
mand line, and all the commands will be listed, together with a brief description of what each command
does. But that is part of the problem. The help available isn’t easy to read nor is it comprehensive.
Realistically, in the context of the Windows emphasis on the graphical user interface, the command line
way of working has been very much a second class citizen.

In addition, the toolset of the existing Windows command shell has several significant limitations.

Batch Files
When you are able to do what you need from the command line you can capture the commands in a
batch (.bat) file, and that’s great — as far as it goes. If you’re not writing batch files regularly, then you
may well find that you can’t remember the exact syntax you need to create logic that satisfies anything
but the simplest needs. The language used in batch files is pretty archaic, and when it was created user-
friendliness wasn’t a high priority. Maintenance of batch files can be tedious, too, particularly if they are
long and were written by someone else.

Yes, batch files can work. But their support for IF and GOTO seems to belong to another era, as in fact it
does. But if you are using a batch file and find you can’t easily stretch it to do something a little more
complex than IF and GOTO will support, what do you do next? There is no easy step up from the syntax
for batch files. In other words, it’s a syntax dead end. Switching to a scripting language like VBScript or
JScript means that you need to learn (or relearn) a scripting language with a very different syntax from
batch files. You also need some familiarity with the underlying object structure that the scripting lan-
guage is going to access or manipulate.

If a scripting language doesn’t give you the performance or functionality that you want, then you have
another step up to make, perhaps to Visual Basic (pre- or post-.NET) or C#. Either way, there are signifi-
cant further changes in syntax.

Inconsistency of Implementation
Another issue in using command line tools was that they were created by different teams at Microsoft.
Those teams worked, to a significant extent, in isolation, like the users of a decade or so before, and that
resulted in a lack of consistency in how commands were implemented in different command line tools.
In individual tools, the syntax to use parameters in one tool would differ from the parameter syntax in
another tool. Such inconsistencies add to the learning curve for those tools. Since Microsoft’s focus was
on GUI tools in Windows, there was no high-level push to standardize command line tools.

28

Part I: Finding Your Way Around Windows PowerShell

06_946939 ch02.qxp 3/15/07 7:01 PM Page 28

Inability to Answer Questions
There are a huge number of tasks that CMD.exe is incapable of performing. For example, you could not
discover from the command line interface (before Windows Management Instrumentation) which pro-
cesses were running on a machine or which services were currently running.

The gaps are so huge that it’s simplest and most honest just to say that they are there and that they’re
huge. CMD.exe is simply not, in my opinion, a tool fit for comprehensively administering one Windows
machine, never mind large numbers of them.

Lack of Integration with GUI Tools
In all versions of Windows, GUI tools have been a major way to carry out administrative tasks across a
wide range of Microsoft and third-party products intended to run on the Windows platform. Using a
GUI to administer one machine can be relatively fast and effective. But, if you have to carry out the same
sequence of clicks on 5, 10, 100 or 1,000 machines, the limitations in scalability of a GUI-based approach
becomes very clear and, as numbers of machines increase, very inefficient and frustrating.

GUI tools often had no easy mapping to the available command line tools. So, for some tasks you had
the opportunity to use command line tools, but for others the only option was to use a GUI tool. There
was no easy way to find out if something you could do with a GUI tool could also be done from the
command line. One result of that was that carrying out a task on a single machine using a GUI didn’t
help you at all with carrying out the same task subsequently on multiple machines.

The GUI Emphasis in Windows
One of the guiding principles when Microsoft moved from the character-based DOS operating system to
Windows was that graphical user interfaces provided ways to carry out tasks that were much more con-
venient than when using DOS-based command line tools. Users had problems finding, understanding,
or remembering command line commands and their switches and parameters. The GUI metaphor
worked better than the command line, at least for those users who were unable (or unwilling) to master
the syntax of command line tools.

For many tasks, the GUI-based approach undoubtedly works well. For other tasks, particularly system
administration tasks, GUI tools can be productive when used on a small scale but become extremely
tedious to use when the same task has to be carried out on a dozen, a hundred, or a thousand machines.

Previous Attempted Solutions
Microsoft has made several previous attempts to address the kinds of issues mentioned earlier in this
chapter. Each attempt has, not surprisingly, taken some steps forward, but each has had limitations. Not
least of the limitations for the Windows user in an increasingly .NET Framework–orientated world is that
the existing technologies don’t use the .NET Framework nor do they generate or execute managed code.

29

Chapter 2: The Need for Windows PowerShell

06_946939 ch02.qxp 3/15/07 7:01 PM Page 29

Windows Script Host
Windows Script Host (WSH) was introduced in 1998. One important aim of Windows Script Host was to
enable various scripting languages to support a range of Windows administration tasks.

Windows Script Host didn’t prove to be popular. One reason, I suspect, was that documentation of how
best to use Windows Script Host wasn’t easy to find in the early years of its life. Naturally, administra-
tors were reluctant to use a tool that they couldn’t easily locate information for.

Another factor in the relatively poor uptake of Windows Script Host was the occurrence of several secu-
rity exploits. Of course, WSH was by no means the only Microsoft product that exhibited worrying secu-
rity vulnerabilities, but a questionable reputation for security isn’t an encouragement to the rapid uptake
of a scripting environment.

Having made those negative comments, it’s fair to say that WSH allows the scripter who uses VBScript,
JScript, or other scripting language to carry out many useful administration tasks. One of the major parts
of the learning curve for administrators was the need to learn about the Component Object Model
(COM). For many Windows developers, that model was almost second nature. For administrators, it
was typically unfamiliar territory. The result was that many administrators lacked the time or motiva-
tion to develop sufficient knowledge of COM APIs to be able to effectively and efficiently carry out rou-
tine administrative tasks. An administrative tool that required less knowledge of the underlying
application programming interfaces (APIs) to get started would be an improvement.

One unavoidable disadvantage of WSH is that the languages you use in WSH scripts are not the lan-
guages you use on the command line or the batch language used to automate command line commands.
So, if you like to explore a machine interactively and find the commands you want to carry out a specific
task, you can’t simply go on and use those same commands in your VBScript or JScript code. As you will
see in later chapters, Windows PowerShell provides a better path from the command line to scripts.

For the sake of efficiency, a tool is needed to allow administration of one or many machines from the
command line. Applying a script with identical commands across dozens or hundreds of machines is
more consistent and more time-efficient than using a GUI to administer large numbers of machines.

Windows Management Instrumentation
Windows Management Instrumentation (WMI) addresses some of the issues that PowerShell attempts to
address. Microsoft was involved in the creating the context to WMI — WBEM (Web-based enterprise man-
agement). The WBEM initiative was picked up by the Distributed Management Task Force (DMTF) to
produce a cross-platform standard for management in a distributed, enterprise computing environment.

WMI tools aren’t particularly user friendly to the uninitiated. The Windows Management
Instrumentation Command-line tool (WMIC), operates via aliases, which attempt to abstract away the
need for detailed knowledge of WMI classes. But WMIC is itself less than user-friendly to the new user.
Other WMI tools need to be downloaded separately and demand some knowledge of WMI architecture
to use them even for simple tasks.

30

Part I: Finding Your Way Around Windows PowerShell

06_946939 ch02.qxp 3/15/07 7:01 PM Page 30

WMI provided a more consistent interface than programming directly against the COM model allowed.
However, WMI has a huge number of classes and properties to master. In addition, writing WMI scripts
can be lengthy and tedious. For example, if you want to display multiple property values, it becomes
really tedious to write multiple times vbcrlf in your code plus line continuation characters and so on. It
gets the job done, but I don’t find it an enjoyable process.

In the context of Microsoft’s current, and likely future, emphasis on code using the .NET Framework, the
fact that neither VBScript nor WMI are .NET-based is a significant factor against WMI going forward. Of
course, WMI scripts will continue to work, but it seems likely to me that no substantive further develop-
ment of WMI will take place. WMI is very useful, but probably WMI will now be a very useful dead
end. WMI isn’t going away any time soon though. Part of WMI’s ongoing usefulness is the ability of
PowerShell’s get-wmiobject to retrieve information using WMI classes. So, if you’ve invested time in
learning about WMI classes, that knowledge will prove useful when using PowerShell. I discuss using
WMI from PowerShell in Chapter 23.

Summary
Windows command line tools have existed for many years in a context where graphical tools were
Microsoft’s preferred approach. As a result, development of the Windows command line has been
neglected and doesn’t meet the needs of today’s businesses or system administrators.

❑ The toolset of CMD.exe covers only a limited range of the tasks that an administrator needs to
carry out.

❑ The syntax of command line tools and batch files means that batch files are limited in the logic
they can easily implement. Lengthy batch files are often difficult to read and understand.

❑ The language of batch files is very different from the scripting languages, such as VBScript and
JScript, needed to get more complex tasks done.

❑ There is no way to capture a task done using a graphical tool and create the corresponding com-
mand line syntax.

In Chapter 3, I will describe the approach that Windows PowerShell takes to these issues and discuss
how, even in version 1, Windows PowerShell provides a better and more consistent way to handle a sub-
stantial number of system administration tasks.

31

Chapter 2: The Need for Windows PowerShell

06_946939 ch02.qxp 3/15/07 7:01 PM Page 31

06_946939 ch02.qxp 3/15/07 7:01 PM Page 32

The Windows PowerShell
Approach

The PowerShell team recognized many limitations of the existing Microsoft command line, GUI,
and scripting tools which I described in Chapter 2. The background against which the PowerShell
team was working was changing significantly with a strategic move at Microsoft from COM
(Component Object Model) programming to .NET Framework programming. It therefore made
sense, going forward, for PowerShell to be based on the .NET Framework.

The move from COM-based programming to .NET Framework–based programming opened up
opportunities to create a new approach to the command line and a new scripting language using
the same commands and syntax as were available on the command line.

A New Architecture
PowerShell 1.0 implements a significant new architecture, different from any preceding Microsoft
command shell. First, it is based on the .NET Framework version 2.0. Second, instead of the tradi-
tional approach of command shell pipelines, which often pass strings or text from one application
to another, the PowerShell approach is to pass objects, rather than text, along the pipeline. In
PowerShell the objects are .NET objects.

07_946939 ch03.qxp 3/15/07 7:01 PM Page 33

.NET Framework-Based Architecture
It probably bears repeating that one of the most significant changes in PowerShell as a command shell is
that it is based on the .NET Framework 2.0. Among the relevant features of the .NET Framework are

❑ Reflection

❑ Network awareness

❑ Rapid application development

In the context of PowerShell, reflection is particularly important. You can find the members of any .NET
class at runtime using the get-member cmdlet. For example, to find the members of running processes
that you can work with, use the following command:

get-process |
get-member |
more

The get-process cmdlet, in the first step of the pipeline, returns System.Diagnostics.Process
objects and passes these to the next step in the PowerShell pipeline. In the second pipeline step, the get-
member cmdlet returns objects representing the members of the System.Diagnostics.Process class.
This process is enabled through .NET reflection.

Windows PowerShell provides a syntax that allows users to make use of static members any .NET
Framework 2.0 class. For example, to find the current time using that syntax and assign it to a variable
$now, type the following command in the PowerShell console:

$now = [System.DateTime]::Now

As you can see, to call a .NET class, you enclose the class name in paired square brackets, and provide
the method or property name separated by two colons. In this case, the command uses the Now static
property of the System.DateTime class and assigns that to the variable $now. The same technique can
be used to employ the methods of any .NET Framework 2.0 class or get or set the value of any property
of a .NET class. Alternatively, you can use the get_now()static method of the System.DateTime
class to achieve the same result:

$now = [System.DateTime]::get_now()

To display the value of the variable $now, simply type the following command:

$now

The current date and time are displayed on the PowerShell console. In traditional command shells, after
you have assigned a date and time to a variable, you have to use string parsing to find desired compo-
nents of the date and time. Issues such as whether the date is in the MM/DD/YYYY, DD/MM/YYYY, or
YYYY/MM/DD format also come into play if the date is held as a string. However, PowerShell offers
advantages in this respect, too. For example, you can unambiguously access the month of a System
.DateTime object, using the month property of a DateTime object:

$now = [System.DateTime]::get_now()
$now.month

34

Part I: Finding Your Way Around Windows PowerShell

07_946939 ch03.qxp 3/15/07 7:01 PM Page 34

To find the members of a .NET Framework object, use the get-member cmdlet.

[System.DateTime] |
get-member

You can specify that only methods be displayed, using

[System.DateTime] |
get-member –memberType method

or only properties, using

[System.DateTime] |
get-member –memberType property

To display the static members of a .NET Framework class, use the –static parameter:

[System.DateTime] |
get-member –static

or to display only static methods or properties combine the –static parameter with the –memberType
parameter. For example, to display static properties of the System.DateTime class use the following
command:

[System.DateTime] |
get-member –static –memberType property

A useful source of information about .NET classes is in the documentation that forms part of the .NET
Framework 2.0 SDK. This can be downloaded from http://msdn.microsoft.com/netframework/
downloads/updates/default.aspx. At the time of writing versions of the SDK are available for x86,
x64, and IA64.

Object-Based Architecture
Windows PowerShell, because it is based on the .NET Framework, is object-based. Many other com-
mand shells are, in essence, pipelines of text. The fact that objects are passed along a pipeline has several
advantages.

For example, when using objects in a pipeline, you no longer have to use string parsing to retrieve
desired components of the date. Assume that you have created a PowerShell variable as follows:

$now = [System.DateTime]::get_now()

To retrieve the year, simply type

$now.Year

and the value of the Year property of the $now variable is displayed. Similarly, the command

35

Chapter 3: The Windows PowerShell Approach

07_946939 ch03.qxp 3/15/07 7:01 PM Page 35

$now.DayOfWeek

displays the day of the week for the current date. Figure 3-1 shows the result of running the preceding
commands.

Figure 3-1

If you’re not familiar with the members of a particular .NET class, use the PowerShell get-member
cmdlet to display the members of an instance of the .NET class. For example, if you wanted to view
information about the methods of the variable $now, which is a System.DateTime object, you could use
the following command, given the assignment of a DateTime object to $now:

$now |
get-member |
more

The get-member cmdlet used without parameters displays all members of a .NET class. The output is
piped to the more alias to display only one screen of information at a time, as shown in Figure 3-2. By
the way, if you need to be convinced that $now is an object of System.DateTime take note of the first
information displayed in Figure 3-2.

Figure 3-2

PowerShell allows you to access .NET Framework Class Library functionality, but for some tasks you
don’t need to take route. For example, finding the current date and time isn’t something you need to use
the preceding syntax for, since PowerShell has a cmdlet to do that, called get-date. Execute the follow-
ing commands to assign the current date and time to the variable $now:

36

Part I: Finding Your Way Around Windows PowerShell

07_946939 ch03.qxp 3/15/07 7:01 PM Page 36

$now = get-date
$now
$now.GetType()
$now.GetType().Fullname

As you can see in Figure 3-3, the get-date cmdlet produces a .NET object (of type System.DateTime),
which can be manipulated as shown earlier.

Figure 3-3

$now = get-date

uses the get-date cmdlet to assign the current date and time to the variable $now. You can display that
value using the command:

$now

To display the type of $now, use the GetType() method:

$now.GetType()

If you are unsure what namespace the DateTime class belongs to,

$now.GetType().Fullname

returns the value System.DateTime, which is the full name of the class.

The .NET Framework class library is huge. PowerShell’s ability to use the .NET Framework class library
allows it to reach into very many places in a Windows installation. Everywhere that a .NET class has
methods or properties you can use PowerShell to exploit the power of those .NET classes from the com-
mand line or by using PowerShell scripts.

In version 1.0 of PowerShell, the number of cmdlets is fairly limited — at least a lot of specialized cmdlet
functionality will be available separately with products such as Exchange Server 2007. Powershell ver-
sion 1.0 has 129 cmdlets. To confirm how many cmdlets are available to you in the PowerShell build that
you are using, use the following command.

(get-command * -CommandType Cmdlet).count

37

Chapter 3: The Windows PowerShell Approach

07_946939 ch03.qxp 3/15/07 7:01 PM Page 37

The number of cmdlets available is displayed on the command line, as shown in Figure 3-4.

Figure 3-4

If you have other products installed which use PowerShell cmdlets under the covers (for example
Exchange Server 2007), the number of cmdlets displayed after running the preceding command may be
much larger.

The cmdlets included in Exchange Server 2007 are not covered in this book. At the time of writing, it is
likely that about 350 cmdlets specific to management of the Exchange Server will be made available in
Exchange 2007.

A New Cross-Tool Approach
PowerShell is intended to provide nearly complete coverage of the administration tasks of Windows
machines using cmdlets. Not everything that is needed to do that is available in PowerShell version 1.
One approach you can use to fill in the gaps in PowerShell 1.0 is to use .NET classes, as described in the
preceding section. Another approach is to use Windows Management Instrumentation. PowerShell pro-
vides a get-wmiobject cmdlet to allow you to retrieve information about machine state. For example,
to retrieve the current date and time using WMI, type the following command:

get-wmiobject –Namespace root\cimv2 –Class Win32_CurrentTime

which can be abbreviated to:

get-wmiobject Win32_CurrentTime

As you can see in Figure 3-5, information about the current date and time is displayed.

Figure 3-5

38

Part I: Finding Your Way Around Windows PowerShell

07_946939 ch03.qxp 3/15/07 7:01 PM Page 38

One use of WMI that is particularly important in PowerShell version 1.0 is accessing remote machines.
The core cmdlets in PowerShell 1.0 only access the local machine.

An alternative approach to remote machine access using cmdlets is to use .NET Framework classes.
However, some Exchange Server 2007 cmdlets have support for accessing remote machines.

GUI Shell (MMC Layered over PowerShell)
The aim of the Windows PowerShell team is that the next generation of the Microsoft Management
Console, MMC 3.0, will provide a graphical user interface (GUI) layered over PowerShell commands. It
seems likely that several next-generation Microsoft products will have PowerShell functionality as the
basis for their management tools. This dual functionality will first be delivered in Exchange Server 2007.

In Exchange Server 2007 the next-generation MMC tools generate PowerShell scripts from GUI actions,
in much the same way that you can currently generate T-SQL scripts from the graphical SQL Server 2005
Management Studio interface. The scripts you create from the MMC 3.0 GUI can, of course, be adapted
for example to carry out the same actions for all machines in a desired collection. So, it is likely that you
will be able to use GUI skills to create PowerShell scripts or at least to create PowerShell script templates
that you can adapt or incorporate into more sophisticated scripts.

Command Line
Often when you are trying to figure out how best to use PowerShell to solve a problem, you will initially
work in the shell on the command line in an exploratory way. This allows you to quickly observe the
actual results you get from executing a PowerShell command and, for example, modify the value of one
or more cmdlet parameters to tweak the behavior of the command (or pipeline of commands) to achieve
just what you want.

Often when applying PowerShell from the command line in an exploratory way, it makes good sense to
use the -whatif switch. Doing so allows you to see what would have happened if you had executed the
command, before PowerShell actually changes anything on the system. This is much more sensible than
diving in and possibly damaging a system. Suppose that you want to delete some files. You might think
that you know exactly what you want to do. For example, if there were several files you wanted to
delete from the Pro PowerShell\Chapter 03 directory, you could use a command like this to delete all
files beginning with t which are .txt files:

remove-item “C:\Pro PowerShell\Chapter 03\t*.txt”

This could result in PowerShell deleting files that you may not have intended to delete. It is safer to run
the command first with the whatif parameter specified, as follows:

remove-item “C:\Pro PowerShell\Chapter 03\t*.txt” -whatif

Figure 3-6 shows the kind of message you will receive if you specify the whatif parameter. The message
tells you what PowerShell would have done if you hadn’t specified the whatif parameter. Nothing has
been deleted. If the files to be deleted are the ones you want to delete, simply remove the whatif param-
eter and run the command again to actually delete the files.

39

Chapter 3: The Windows PowerShell Approach

07_946939 ch03.qxp 3/15/07 7:01 PM Page 39

Figure 3-6

If you want to try this out yourself, create some files in the Chapter 03 directory, for example by using
the following commands:

“test” > “C:\Pro PowerShell\Chapter 03\Test1.txt”
“test” > “C:\Pro PowerShell\Chapter 03\Test2.txt”
“test” > “C:\Pro PowerShell\Chapter 03\Test3.txt”

The redirection operator, >, sends the test string to a file as named in the path, which forms the latter
part of each command.

You can run all the core cmdlets from PowerShell’s command line in this way. Typically, you will create
pipelines of cmdlets with objects created in one step of the pipeline passed to the next step of the
pipeline for some further processing. You may, for example, use the where-object cmdlet to filter
objects passed to that step by an earlier step.

The following command creates a pipeline that looks for .dll files in the C:\Windows\System32
folder, selects FileInfo objects where the DLL was created in 2006, sorts those in ascending date order,
and displays a two-column table containing the name of the DLL and the date and time when it was cre-
ated. For ease of reading, I have put each step of the pipeline on its own line on the page. The command
assumes that you installed Windows in the C:\Windows folder.

get-childitem -Path C:\Windows\System32 -Filter *.dll |
where-object {$_.CreationTime.Year -eq “2006”} |
sort-object CreationTime |
format-table Name, CreationTime

Figure 3-7 shows the part of the results generated by the preceding command.

Figure 3-7

40

Part I: Finding Your Way Around Windows PowerShell

07_946939 ch03.qxp 3/15/07 7:01 PM Page 40

In the first step of the pipeline, the get-childitem cmdlet finds child items in a specified folder. In a
folder, child items are either files or other folders. The Filter parameter specifies which child items are
to be selected (i.e., .dll files).

Next, the where-object cmdlet in the second step of the pipeline filters the objects passed to it, and the
sort-object cmdlet sorts the filtered objects in ascending order by creation time. The final step uses
the format-table cmdlet to produce a two-column table for display.

Command Scripting
Once you are satisfied that you have the right output or effects, you can include PowerShell command
lines in a PowerShell script file.

The PowerShell command line doesn’t make it really convenient to copy commands into a text editor.
One simple technique is to clear the screen then run each of the commands (which can be accessed by
using the up and down arrows) that you want to incorporate in the script, choose Edit ➪ Select All in the
command shell window’s menu, then press Return to copy all the selected text. You can then paste that
text into a text editor and delete the prompts that you copied from the screen. Alternatively, you can
drag across desired text (you can only select a rectangular block) and right-click to copy it.

PowerShell includes the start-transcript and stop-transcript cmdlets. The start-transcript
cmdlet redirects a copy of everything that is typed on the command line and displayed on the screen to a
file. You can then open the transcript file after completion of a PowerShell session and copy and paste
desired commands from the transcript to your selected text or code editor. This is better than using ses-
sion history, since it captures all commands in a session (unlike the session history, which stores a speci-
fied maximum number commands) and also permanently stores them in a file (which session history
does not). Depending on how you work with PowerShell, you may want to issue start-transcript
as the first command of a PowerShell session. Alternatively, and more conveniently, add the
start-transcript command to a profile file that PowerShell will load before you type your first
command. The parameters of the start-transcript cmdlet allow you to send the output to any
selected directory.

Other options are becoming available at the time of writing. For example, Karl Prosser’s PowerShell
Analyzer allows you to enter PowerShell commands in a text editor pane and view the results in a pane
that looks similar to the PowerShell shell. Figure 3-8 shows an early build of PowerShell Analyzer. You
can find further information about PowerShell Analyzer at www.powershellanalyzer.com and down-
load it from there.

Figure 3-9 shows the situation when typing the get-date cmdlet and shows the IntelliSense-like support
in the editor. Notice, too, that the version I was testing didn’t echo the PowerShell command in the shell.
This is a much more convenient environment in which to develop scripts. You can try out a command or
series of commands and tune the results to what you want. Once you have created the desired functional-
ity using a cmdlet or a pipeline simply select File ➪ Save As to save the script in a desired location.

41

Chapter 3: The Windows PowerShell Approach

07_946939 ch03.qxp 3/15/07 7:01 PM Page 41

Figure 3-8

Another new tool available in development at the time of writing is PowerShell IDE from Tobias
Weltner. Like PowerShell Analyzer it offers a code editor pane and a shell-like pane among other fea-
tures. When you run a PowerShell command, or series of commands, they are echoed in the shell.

For further up-to-date information on PowerShell IDE, visit www.powershell.com.

Commercial scripting tools will also offer support for development of PowerShell scripts. At the time of
writing beta builds of the well-respected PrimalScript editor are available with support for Windows
PowerShell. For further information about PrimalScript visit www.sapien.com.

I describe writing PowerShell scripts in more detail in Chapter 10.

42

Part I: Finding Your Way Around Windows PowerShell

07_946939 ch03.qxp 3/15/07 7:01 PM Page 42

Figure 3-9

COM Scripting
Although PowerShell is based on the .NET Framework, you can also carry out scripting of COM objects.
This has a couple of advantages. You can leverage any existing knowledge you have of how to manipu-
late COM objects. It also fills in gaps that the cmdlets don’t cover in version 1.0 of PowerShell.

The new-object cmdlet, when used with the ComObject parameter, allows you to create a new COM
object. You can then manipulate that COM object, as you need to.

To create an instance of Internet Explorer from the command line, use the following command:

$ie = new-object –ComObject InternetExplorer.Application

43

Chapter 3: The Windows PowerShell Approach

07_946939 ch03.qxp 3/15/07 7:01 PM Page 43

The COM object is assigned to the variable $ie. This appears to do nothing since, by default, a newly
created instance of Internet Explorer is not visible. However, if you execute the following command,
which makes the newly created Internet Explorer instance visible, you can then see that you have auto-
mated an instance of the browser.

$ie.visible = $true

Notice that PowerShell represents true as $true (and false as $false).

You can then use the methods and properties of the object you created to automate Internet Explorer. For
example, you can navigate to a specified URL:

$ie.navigate2(“http://andrwwatt.wordpress.com”)

This is shown in Figure 3-10.

Figure 3-10

I describe COM scripting in more detail in Chapter 13.

44

Part I: Finding Your Way Around Windows PowerShell

07_946939 ch03.qxp 3/15/07 7:01 PM Page 44

Namespaces as Drives
In PowerShell several data stores are exposed as drives. When you work with files and folders, you
expect to see a drive as the container. In Windows PowerShell the registry, aliases, certificates, environ-
ment variables, functions, and variables are all exposed to you as drives. In other words, you can use the
same cmdlets to work on items in the file system and the registry, aliases, certificates, functions, and
environment variables.

Each of the data stores exposed by PowerShell as a drive is underpinned by a command shell provider. A
command shell provider maps underlying data structures so that you can work with the data as if it
were stored in folders and files. To display the providers available on your system, use this command:

get-psdrive |
group-object Provider |
format-list Name, Count

Figure 3-11 shows the providers available on one Windows XP system. Notice that the FileSystem
provider supports several drives.

Figure 3-11

The get-psdrive cmdlet retrieves all drives defined on your system. In the second step of the pipeline,
the group-object cmdlet groups objects passed to it by the first step of the pipeline according to the
command shell provider. The final step of the pipeline formats the groups as a list, with the name of
each group and the count in each displayed.

An alternative approach is to use the get-psprovider cmdlet:

get-psprovider

which produces results similar to those shown in Figure 3-12.

45

Chapter 3: The Windows PowerShell Approach

07_946939 ch03.qxp 3/15/07 7:01 PM Page 45

Figure 3-12

Notice that this approach also displays information about the capabilities of the available providers. On
this machine there are three drives that use the FileSystem provider. Notice, too, that there are two
drives, HKLM and HKCU, that use the Registry provider. The HKLM drive corresponds to the
HKEY_LOCAL_MACHINE hive in the registry. The HKCU drive corresponds to the HKEY_CURRENT_USER
hive.

Since the registry is exposed as a drive, you can navigate to it just as you can to a file system drive. For
example, to move to the HKLM drive, simply type:

set-location HKLM:

The set-location cmdlet is used to set a new location. More conveniently, you can use the cd com-
mand as this is an alias for set-location:

cd HKLM:

Whether you use the set-location cmdlet explicitly or by using the cd alias, by default, the prompt
changes to indicate the new current working directory. To display the content of the HKLM drive, use
this command:

get-childitem *

The * character in the preceding command is a wildcard, which matches all child items. As you can see
in Figure 3-13, there are four children. Access is denied to the SAM child item. Similarly, if you use the
Regedit utility, you cannot see the content of SAM.

Figure 3-13

46

Part I: Finding Your Way Around Windows PowerShell

07_946939 ch03.qxp 3/15/07 7:01 PM Page 46

The $pwd variable contains information about the current working directory. To display the current
working directory, simply type:

$pwd

The current location in the currently used command shell provider is displayed. If you followed the pre-
ceding commands the result HKLM:\ is displayed.

File System Provider
The FileSystem provider allows you to work with drives, folders, and files in ways similar to the famil-
iar techniques you use in CMD.exe. There are specific cmdlets to retrieve information about drives (get-
psdrive) and folders and files (get-childitem). To ease the transition toward using these cmdlets,
you can, by using built-in aliases, apply familiar commands like dir to find the child items in a folder.
To do that without using an alias, you use the get-childitem cmdlet.

The following commands use the dir alias to retrieve .txt files in the C:\Pro PowerShell\Chapter 03
folder (assuming that it is the current directory).

dir *.txt

The equivalent command using the get-childitem cmdlet is:

get-childitem *.txt

The dir alias uses the get-childitem cmdlet under the covers. There is no significant performance
benefit either way. It’s simply a matter of convenience or preference.

Registry
The Registry provider is a command shell provider that allows you to work with registry keys and
values in ways similar to those you use to work with files and folders. For example, to move to the
HKEY_CURRENT USER hive in the registry and find its child items, use the following commands:

set-location HKCU:
get-childitem *

The set-location cmdlet sets the current working directory (which is contained in the $pwd variable).
The colon must be included after the drive name. The get-childitem cmdlet retrieves information
about the hives in the HKCU drive. Figure 3-14 shows the results of executing the preceding commands.

To go down a level into the Software key and find subkeys beginning with m, use the following
commands:

set-location software
get-childitem m*

47

Chapter 3: The Windows PowerShell Approach

07_946939 ch03.qxp 3/15/07 7:01 PM Page 47

Figure 3-14

Figure 3-15 shows the results. The set-location cmdlet’s argument is interpreted relative to the cur-
rent location. Since the current working directory (using the drive metaphor) is HKCU:\, the Software
key is its child, and the set-location cmdlet sets that as the new location. The get-childitem cmdlet
finds the child items of that location that begin with m since m* uses the * wildcard to mean the character
m followed by zero or more other characters.

Figure 3-15

Aliases
I’ve already shown you some important aliases (e.g., dir being an alias for get-childitem). You can find
the aliases that are available to you in your Windows PowerShell installation by using the get-alias com-
mand or by using the Alias provider. Since, the aliases are surfaced as a drive, you can simply type

set-location alias:

to navigate to the alias drive. Note that you must include the colon character in the preceding command.
Then you can use the get-childitem cmdlet to find the available aliases. For example, to find aliases
that begin with c, use this command:

get-childitem c*

48

Part I: Finding Your Way Around Windows PowerShell

07_946939 ch03.qxp 3/15/07 7:01 PM Page 48

Figure 3-16 shows the results.

Figure 3-16

Notice in Figure 3-16 that the alias cd for the set-location cmdlet is among those displayed.

Variables
Variables, too, are surfaced as a drive. To switch to the variable drive and display variables that contain
the character sequence maximum, use these commands:

set-location variable:
get-childitem *maximum*

The pattern *maximum* matches zero or more characters (as indicated by the * wildcard) followed by the
literal character sequence maximum followed by zero or more characters. As you can see in Figure 3-17,
there are several variables that contain the specified character sequence.

Figure 3-17

The cd alias that you saw in Figure 3-16 can be used to achieve the same result, since the cd alias is an
alias for the set-location cmdlet:

cd variable:
get-childitem *maximum*

49

Chapter 3: The Windows PowerShell Approach

07_946939 ch03.qxp 3/15/07 7:01 PM Page 49

If you wanted to retrieve the information just mentioned, you could do it using a single command:

get-childitem variable:*maximum*

Active Directory
An Active Directory provider made a brief appearance in early builds of PowerShell but then was
removed. It seems likely that the Active Directory provider will reappear in PowerShell some time after
the release of version 1.0.

Some Exchange Server 2007 cmdlets allow you to manipulate Active Directory. At the time of writing,
Exchange Server 2007 is in beta. Further information on Exchange Server 2007 and the cmdlets available
in the Exchange Management Shell is available at www.microsoft.com/exchange/default.mspx.

Even in the absence of an Active Directory provider in Windows Powershell 1.0, you can explore and
manipulate Active Directory by using the relevant .NET Framework 2.0 classes. For example, the following
code finds information about Active Directory:

$AD = new-object System.DirectoryServices.DirectoryEntry

You can then use the $AD variable and its properties to explore Active Directory. The command

$AD

displays the root of the Active Directory hierarchy. Figure 3-18 shows the results on a test domain
controller.

Figure 3-18

The command

$AD | get-member

displays the members of the $AD variable. You can then use properties such as whenCreated or
whenChanged to find out when it was created or changed. For example, to find out when the Active
Directory hierarchy was last changed, use this command:

$AD.whenChanged

50

Part I: Finding Your Way Around Windows PowerShell

07_946939 ch03.qxp 3/15/07 7:01 PM Page 50

Certificates
Certificates associate an identity with a public key and are used for purposes such as authenticating soft-
ware to be installed on a network. In Windows PowerShell, you can use the cert drive to explore infor-
mation about the certificates, if any, on a machine. For example, to move to the cert drive and display
all child items on that drive, use this command:

set-location cert:
get-childitem *

Unlike the variable and alias drives, the cert drive has a hierarchy. As you can see in Figure 3-19,
the Windows XP machine that the preceding command was run on has locations for the current user and
local machine, with further stores contained in those.

Figure 3-19

The PowerShell command shell providers generally support the same set of parameters. However, in
some situations a provider can have its own parameter(s). The Certificate provider supports, for exam-
ple, a codesigning parameter that other providers have no need for.

I discuss security in more detail in Chapter 16.

Extensibility and Backward Compatibility
Windows PowerShell uses several techniques to make things easier for users moving to PowerShell from
the Windows Cmd.exe shell, from Unix or Linux backgrounds as well as those who use Windows GUI
administration tools such as MMC, the Microsoft Management Console, version 3.

Aliases
Aliases are used in Windows PowerShell, but PowerShell is not the first command line tool to use this
feature. For example, the WMI command line utility WMIC uses aliases to allow some abstraction from
direct use of WMI classes. For example, to find users on a machine try this command:

useraccount list brief

The preceding command lists user accounts on a machine.

51

Chapter 3: The Windows PowerShell Approach

07_946939 ch03.qxp 3/15/07 7:01 PM Page 51

Just as WMIC aliases make it easy to access WMI functionality in a succinct way, PowerShell also sup-
ports succinct access or familiar access to a range of PowerShell functionality. Some commands, such as
cls which is the alias for the clear-host cmdlet, are shorter than the underlying commands and are
also familiar to many users who have used it in the CMD.exe shell.

By using aliases, you can simplify your use of PowerShell. For example, to retrieve information about
child items of the current location, you can use the following command.

get-childitem *

But when time is pressing or you are writing multistep pipelines on the command line, it is quicker to
type the following:

gci *

Or, if you are used to CMD.exe:

dir *

Or, if Unix commands are familiar:

ls *

As you can see from the preceding commands, there are multiple aliases for some cmdlets. Some, such
as gci, are abbreviations of a cmdlet name, some are commands familiar from CMD.exe, and some are
commands familiar from the Unix family of operating systems. Which you use, is up to you. If you want
to create new aliases, you can use the new-alias cmdlet to do so. To find all aliases on the system, you
can use the get-alias cmdlet, as in the following command:

get-alias

To display available aliases beginning with c in alphabetical order by the name of the alias, use this
command:

get-alias c* |
sort-object Name

The sort-object cmdlet sorts objects passed to it by the first step in the pipeline. The argument to the
sort-object cmdlet is the value of the positional property parameter. A fuller version of the preced-
ing command is:

get-alias c* |
sort-object –property Name

To display available aliases sorted in alphabetical order by the name of cmdlets, use the following com-
mand. The name of the cmdlet for which an alias has been created is stored in the Definition property
of the System.Management.Automation.AliasInfo objects created by executing the get-alias
cmdlet.

get-alias c* |
sort-object Definition

52

Part I: Finding Your Way Around Windows PowerShell

07_946939 ch03.qxp 3/15/07 7:01 PM Page 52

Figure 3-20 shows the results of sorting by the Name and Definition properties.

Figure 3-20

Use Existing Utilities
Windows PowerShell allows you to use familiar existing Windows command line utilities. For example,
you can use the findstr utility to find text that matches a pattern. To demonstrate this, let’s create a test
document named PowerShell.txt with three lines of text, as follows:

Windows PowerShell is a great new shell and scripting language.
Windows PowerShell used to be called Monad.
This line won’t be retrieved by findstr.

You can find the lines that contain the word PowerShell by using the following findstr command from
the PowerShell console:

findstr “PowerShell” PowerShell.txt

As you can see in Figure 3-21, the desired lines are displayed. Make sure that you run the command in
the folder that you saved PowerShell.txt in.

Figure 3-21 53

Chapter 3: The Windows PowerShell Approach

07_946939 ch03.qxp 3/15/07 7:01 PM Page 53

You can also use the PowerShell get-content cmdlet to do the same thing using this command:

get-content PowerShell.txt |
where-object {$_.ToString() –match “.*PowerShell.*”}

or, more simply:

get-content PowerShell.txt |
where-object {$_.ToString() –match “PowerShell”}

The –match operator allows you to use .NET regular expressions to match strings. In the preceding
example, you can use either of the regular expression patterns shown. The pattern .* (a period followed
by an asterisk) matches zero or more alphanumeric characters.

The joy of Powershell is that you can use either the PowerShell cmdlets and the like, or you can just con-
tine to use the findstr utility from the PowerShell command prompt. Thus, you can continue to use
familiar utilities from PowerShell command line.

You can also use the get-command cmdlet to discover applications on the PATH environment variable.
For example, if you occasionally use the findstr utility but can’t remember its exact name, you can use
get-command to look for it using a wildcard, as in the following command:

get-command fi*

or, using the gcm alias:

gcm fi*

By default, get-command returns all types of “command” including cmdlets and executable applica-
tions. If you know that you are looking specifically for an application (rather than, say, a cmdlet) add the
CommandType parameter as follows:

get-command fi* -CommandType Application

Figure 3-22 shows the results of executing the two preceding commands. In this case, the same com-
mands are returned by both forms of the command, since no cmdlets begin with fi.

Figure 3-22
54

Part I: Finding Your Way Around Windows PowerShell

07_946939 ch03.qxp 3/15/07 7:01 PM Page 54

Use Familiar Commands
PowerShell makes it easy for users of CMD.exe to migrate over. The get-childitem cmdlet is the native
PowerShell cmdlet used to obtain the child items of a given object. Unix admins, searching for files in a
folder, might like to use the ls aslias, while a Windows admin might type dir. PowerShell supports
both commands as built-in aliases. Behind the scenes, PowerShell uses the aliasing process to map the ls
and dir commands to the get-childitem cmdlet.

Figure 3-23 shows part of an example profile file which you can use to set aliases at PowerShell startup. I
have highlighted the line which sets ls as an alias for the get-childitem cmdlet. The line that sets the
dir alias for get-childitem is further down in the figure.

Figure 3-23

Notice that the set-alias cmdlet is used to create the aliases shown in Figure 3-23. Aliases and startup
files are discussed in greater detail in Chapter 5.

Long Term Roadmap: Complete Coverage in 3 to 5 Years
At the time of writing, the first version of Windows PowerShell, version 1.0, has been released. Like
most ambitious projects, Windows PowerShell is going to take several more years to achieve complete
coverage of all the desired functionality. PowerShell version 1.0 covers many of the common things that
you would want to do in administering a Windows system. Over the next 3 to 5 years, there will be fur-
ther versions of PowerShell that will add further functionality, including a better development and shell
environment, better remoting, and so on.

Since the coverage achieved in PowerShell version 1.0 is only part of what will come later, to carry out
necessary admin tasks, you may need to fill in the gaps using COM objects, Windows Management
Instrumentation (WMI), or direct manipulation of .NET classes or objects.

55

Chapter 3: The Windows PowerShell Approach

07_946939 ch03.qxp 3/15/07 7:01 PM Page 55

COM Access
Windows PowerShell provides you with the ability to access COM objects by using the new-object
cmdlet used with the ComObject parameter. Once created, use COM automation to make use of the
object. Microsoft expects that, over time, you will use this functionality less and less as PowerShell or
third-party developers add additional cmdlets in succeeding versions.

WMI Access
Windows PowerShell also provides full read access to Windows Management Instrumentation (WMI).
An important area where WMI access fills a gap in the current Powershell cmdlets is access to remote
machines. The core version of PowerShell 1.0, for example, provides no cmdlets to access remote
machines, except by using WMI. When you use WMI, you can achieve remote access using the get-
wmiobject cmdlet.

Some of the cmdlets being built into Exchange Server 2007, on the other hand, can access remote
machines, since Exchange Server 2007 cmdlets are designed to do this.

.NET Class Access
PowerShell version 1.0 provides very succinct ways to manipulate a subset of .NET objects. For example,
writing

get-date

is more succinct than

[System.DateTime]::Now

as a way of retrieving the current date and time. For areas of functionality where no PowerShell version
1.0 cmdlet exists, you have the option of directly using the members of .NET classes or objects with the
syntax I showed you earlier in this chapter. But if a cmdlet existed, it would likely be an easier or more
succinct approach. In time, additional cmdlets may provide more functionality. But the PowerShell syn-
tax that supports using .NET objects means that you are not stuck waiting for future cmdlets to be devel-
oped. You can create your own cmdlets or you can directly manipulate .NET Framework 2.0 objects.

Object-Based Approach in PowerShell
One important feature in PowerShell is that it is object-based. PowerShell operates on .NET, COM, and
WMI objects. Everything in PowerShell is object-based.

Object-Based Pipelines
Command shells such as CMD.exe on Windows or BASH/CSHELL in Linux/Unix makes use of
pipelines. A pipeline allows the result of one command to be passed to another command. CMD.exe, in
common with the usage of Linux/Unix pipelines, typically passes strings from one command to the next.
This is very useful, but it imposes the burden of string parsing on the user. In the Linux environment, the

56

Part I: Finding Your Way Around Windows PowerShell

07_946939 ch03.qxp 3/15/07 7:01 PM Page 56

need to achieve increasingly complex string manipulation led to the development of utilities such as awk,
sed, and grep, as well as Perl. You have immense flexibility when using that approach but at the expense
of needing to learn multiple complex tools and languages, each with overlapping functionality.

The approach taken in Windows PowerShell is different, and better, in that .NET objects, not strings, are
passed between steps in the pipeline. In the case of PowerShell, each command is typically a cmdlet,
although you can also use .NET classes and their methods and properties in pipeline steps. Each object
passed along a pipeline has the methods and properties common to that type of object. This enables you
to use object notation to retrieve or manipulate desired components or values of each object.

One advantage of the object-based approach is that the displaying of the information contained in
objects can also be handled as a pipeline step. The format-table and format-list cmdlets are among
the ways to display information exiting a PowerShell pipeline.

A Consistent Verb-Noun Naming Scheme
Windows PowerShell cmdlets consistently use a verb-noun (that is a verb followed by a hyphen fol-
lowed by a noun) naming scheme. For example, to find the running services on a machine, you can type:

get-service

This returns information about all services on the machine (whether they are running or stopped).

As a more complex example, to find the verbs available in the version of PowerShell on your machine,
use this command:

get-command -CommandType cmdlet |
group-object verb |
sort-object Count |
format-list Count, Name,Group

Figure 3-24 shows part of the results on the machine I am using to write this book. As you can see, the
get verb is frequently used, as are new and set.

Figure 3-24

57

Chapter 3: The Windows PowerShell Approach

07_946939 ch03.qxp 3/15/07 7:01 PM Page 57

The first step of this example retrieves objects representing all available cmdlets. The second step uses
the group-object cmdlet to group the cmdlets by the verb part of the cmdlet name. The third step sorts
the groups by the count of the group (in this case the verb). The final step uses the format-list cmdlet
to display the count of each group, its name, and the cmdlets in each group.

Coping with a Diverse World
One of the difficulties facing any administrator is that the software world is immensely varied and is
constantly changing.

In this book, as is true with most computer books, all the code is tested on one or more systems. In the
real world, not every machine is set up identically. So in a book on, say, Windows Server 2003, I might
tell you what behavior to expect but that statement is good only at the time it is written and for the setup
or setups that I test. Why? Sometimes books are written against betas of a product, and the product team
make late tweaks intended to improve the product or remove a bug. Either intentionally or unintention-
ally, the behavior of the system may be subtly or overtly changed.

Similarly, Microsoft is putting out updates for Windows that you can apply automatically using
Windows Update or at a time of your own choosing. Many of those minor updates are intended to fix
security problems, but some will affect aspects of your Windows system so that they behave differently
from when the book was written. Sometimes that will affect you significantly, sometimes not.

Windows PowerShell helps to reduce the kinds of uncertainty that I mentioned in the preceding para-
graphs and allows you to explore the system’s actual state at the time you test it. You don’t need to
worry that your system might differ in some characteristic from the one I or any other author tested
code on. You can find out exactly the state of your machine using PowerShell.

Upgrade Path to C#
The syntax of PowerShell has been designed with a view to providing a fairly easy upgrade path to C#
code. The delimiters for script blocks, for example, are paired curly braces, corresponding to the use of
paired braces as delimiters in C#.

Scripting PowerShell is discussed in more detail in Chapter 10.

Working with Errors
Let’s suppose that you are running a PowerShell script on a hundred or a thousand machines. On many
of the machines, it’s likely that the script will run without error. On a subset of the machines you will,
unless you are very lucky, get some kind of error. It’s just how the real world is — not everything works
as you hope it will. The architects of Windows PowerShell recognized that reality, so the PowerShell
approach, which is to allow you to work as if errors are expected, reflects the kind of situations that will
arise in any large multiuser environment.

PowerShell allows you to use error information in several ways. I discuss errors and how you can han-
dle them in Chapter 17.

58

Part I: Finding Your Way Around Windows PowerShell

07_946939 ch03.qxp 3/15/07 7:01 PM Page 58

Debugging in PowerShell
When you’re writing code of any length, it is important to be able to debug the code you have written.
Since PowerShell 1.0 script code isn’t, at least natively, written in a GUI environment, the PowerShell
shell needs to support debugging in a command line environment.

I discuss debugging in Chapter 18.

Additional PowerShell Features
In this section, I introduce some additional features of PowerShell that can affect how you use it in sev-
eral situations.

Extended Wildcards
PowerShell includes support for extended wildcards in the values for cmdlet parameters, although not
all parameters allow wildcards. The following table shows the wildcards supported and briefly explains
their meaning.

Wildcard Description

? Matches exactly one character in a specified position.

* Matches zero or more characters.

[abc] Matches a class of characters. One match is found for any of the characters
inside the square brackets.

[a-c] Matches a range of characters. One match is found for any character between
the character before the hyphen and the character after the hyphen.

In addition to supporting an extended range of wildcards, Windows PowerShell also supports regular
expressions.

Wildcards are useful when, for example, you want to see what files of a particular type are present in a
directory. You can of course do that using Windows Explorer, by right-clicking in a folder, selecting
Arrange Icons By ➪ Type. You still have to scan a potentially large number of files to find the files of the
desired type.

In PowerShell you can access all the files in the folder C:\Windows\System32 by typing the command:

get-childitem –Path C:\Windows\System32

This returns a large number of files. To focus only on DLLs whose name begins with the character
sequence ad (that is an a followed by a d), use this command:

get-childitem –Path C:\Windows\System32\ad*.dll

59

Chapter 3: The Windows PowerShell Approach

07_946939 ch03.qxp 3/15/07 7:01 PM Page 59

Figure 3-25 shows the result of executing the preceding command on a Windows XP machine.

Figure 3-25

Not all cmdlet parameters support wildcards. The help files for individual cmdlets allow you to find out
if a parameter does or does not support wildcards. To display the full detail of help information on
parameters you need to use the –full parameter. For example, to view the help information about the
get-member cmdlet, type:

get-help get-member -full

Figure 3-26 shows the help information for the Name and InputObject parameters of the get-member
cmdlet. Notice that the Name parameter accepts wildcards, and the InputObject parameter does not.

Figure 3-26

Automatic Variables
When you run the Windows PowerShell, a number of variables are set by the command shell. I list these
variables in the following table.

60

Part I: Finding Your Way Around Windows PowerShell

07_946939 ch03.qxp 3/15/07 7:01 PM Page 60

Variable Description

$$ Contains the last token received from the last line of code received
by the command shell.

$? Contains the success/fail status of the last operation carried out
by the command shell. Holds the boolean value True or False.

$^ Contains the first token received from the last line of code
received by the command shell.

$_ Contains the current pipeline object. Used by the where-object
cmdlet, for example.

$Args An array of the parameters, not explicitly defined by name,
passed to a function.

$ConfirmPreference Specifies what to do before PowerShell carried out an action that
has side effects.

$ConsoleFileName The name of the current console file.

$DebugPreference Specifies the debugging policy.

$Error An array of error objects.

$ErrorActionPreference Specifies how errors are to be responded to.

$ErrorView Specifies the mode for displaying errors.

$ExecutionContext Specifies the execution objects available to cmdlets.

$False The boolean value False.

$FormatEnumerationLimit Specifies the limit on the enumeration of IEnumerable objects.

$Home Specifies the home directory for the current user.

$Host Contains information about the PowerShell console.

$Input Specifies the input to a script block in a pipeline.

$MaximumAliasCount Specifies the maximum number of aliases allowed.

$MaximumDriveCount Specifies the maximum number of drives allowed.

$MaximumErrorCount Specifies the maximum number of errors stored in the $Error
array.

$MaximumFunctionCount Specifies the maximum number of functions allowed in a session.

$MaximumHistoryCount Specifies the maximum number of PowerShell commands stored
in history.

$MaximumVariableCount Specifies the maximum number of variables available in a session.

$MyInvocation Contains information about how a script was called.

$NestedPromptLevel The level of nesting of a PowerShell prompt. The level is 0 for the
outermost shell.

Table continued on following page

61

Chapter 3: The Windows PowerShell Approach

07_946939 ch03.qxp 3/15/07 7:01 PM Page 61

Variable Description

$null The NULL value.

$PID The process ID for the PowerShell process.$pi.

$Profile The location of a user’s profile file (Profile.ps1).

$ProgressPreference Specifies the action taken when progress records are delivered.

$PSHome The directory that PowerShell is installed into.

$PWD The current (or present) working directory.

$ReportErrorShow When set to TRUE (1) causes the exception class for exceptions to
ExceptionClass be displayed.

$ReportErrorShow When set to TRUE (1) causes the chain of inner exceptions to be
InnerException displayed.

$ReportErrorShowSource When set to TRUE (1) causes the assembly names of exceptions to
be displayed.

$ReportErrorShow When set to TRUE (1) causes the stack trace for exceptions to be
StackTrace displayed.

$ShellId Name of the PowerShell shell running (default is Microsoft
.PowerShell.

$True The boolean value TRUE.

$VerbosePreference Specifies the action to take when the write-verbose cmdlet is
used in a script to write data.

$WarningPreference Specifies the action to take after text is written using the write-
warning cmdlet.

$WhatIfPreference Specifies whether or not –whatif is enabled for all commands.

Summary
Windows PowerShell version 1 provides a new command shell and scripting language for the Windows
platform. PowerShell is based on the .NET Framework version 2.0. An important difference from other
command shells is that PowerShell passes objects, specifically .NET objects, between steps in a pipeline.

PowerShell allows you to use your existing skills with Windows command line tools and in scripting
COM objects and Windows Management Instrumentation.

Data stores, including the registry and environment variables, are exposed as drives in PowerShell. This
allows you to use the same PowerShell commands to navigate those data stores as you use to navigate
or manipulate the file system.

62

Part I: Finding Your Way Around Windows PowerShell

07_946939 ch03.qxp 3/15/07 7:01 PM Page 62

Using the Interactive Shell

One of the most frequent and useful ways to put Windows PowerShell to work is from the
Windows PowerShell command line. For example, when you use Windows PowerShell to perform
ad hoc diagnostics on a system, you will typically use it interactively from the Windows
PowerShell shell command line. To diagnose causes of unusual system behavior effectively, you
need to find out what the conditions are that are likely causing problems. To do so, you need to
explore the characteristics of the system in an interactive way, which is where the command line
comes in. The information that you discover about one aspect of the system’s operation can help
you focus subsequent commands that you issue. Of course, in some situations you may need to
carry out similar diagnostic operations on multiple systems, and it makes sense to save at least
some of the commands you use on the command line to a Windows PowerShell script file.

In this chapter, I show you how Windows PowerShell parses characters entered at the command
line, so that you can understand the differences between command mode parsing and expression
mode parsing. I also show you how to use Windows PowerShell commands to explore, from the
command line, important information about the running of a Windows system.

Windows PowerShell’s Two Command
Line Parsing Approaches

One of the potentially confusing aspects for newcomers to Windows PowerShell when using the
command line is that, on the command line, Windows PowerShell can parse in two ways: command
mode and expression mode. To illustrate this, type the following at the command line:

2 + 2

08_946939 ch04.qxp 3/15/07 7:02 PM Page 63

The value 4 is displayed in the console. The expression 2 + 2 has been evaluated and then the result of
the evaluation has been displayed in the console. This is expression mode. Next, type the following at the
command line:

write-host 2 + 2

This time Windows PowerShell just wrote the string 2 + 2 to the console — Windows PowerShell per-
forms no calculations. Figure 4-1 shows the two effects.

Figure 4-1

The preceding example demonstrates expression mode parsing for the first command and command mode
parsing for the second. What do you do if you want Windows PowerShell to evaluate 2 + 2 in the second
example? You can simply rewrite it as:

write-host (2 + 2)

Inside parentheses, Windows PowerShell’s parser makes a fresh start for deciding which parsing mode
to use. The 2 + 2 inside the paired parentheses is treated as an expression and is parsed in expression
mode, just as when 2 + 2 is written alone on the command line. So, the expression inside the paired
parentheses is evaluated first, and the value that results is the argument to the write-host cmdlet,
which writes the value, 4, to the console.

To know whether Windows PowerShell will operate in command mode or expression mode, you need to
understand the rules that the parser uses to decide which mode to use.

The Windows PowerShell parser uses expression mode when the command

❑ Begins with a number: 2 + 2.

❑ Begins with a dollar sign: $a.

❑ Begins with a quotation mark: “This is a string”.

❑ Begins with a dot followed by a number: .5.

The existence of expression mode is convenient in contrast to other command line environments, where
you need explicitly to issue a command for the result of an expression to be displayed on screen. For exam-
ple, in CMD.exe the preceding commands would produce an error, rather than evaluating the expression.
Optionally, in Windows PowerShell, you can use the write-host cmdlet to display the result of an expres-
sion. For example, to display a string onscreen type the following at the command line:

write-host “Hello world!”

64

Part I: Finding Your Way Around Windows PowerShell

08_946939 ch04.qxp 3/15/07 7:02 PM Page 64

The Windows PowerShell parser uses command mode when the command:

❑ Begins with an alphabetic character: write-host 3 + 2.

❑ Begins with a dot followed by a space character: . “myScript.ps1”.

❑ Begins with a dot followed by an alphabetic character: .someCommand.

❑ Begins with an ampersand: & something.

Expression Mode Examples
To know whether Windows PowerShell will operate in command mode or expression mode, you need to
understand the rules that the parser uses to decide which mode to use. This section covers the rules and
provides examples of expression mode parsing.

The Windows PowerShell parser uses expression mode when the command

❑ Begins with a number

When the initial character on a line is a number, the Windows PowerShell parser works
in expression mode. So, typing

8 / 4

at the command line causes the expression 8 / 4 to be evaluated. The result, 2, is dis-
played in the console.

❑ Begins with a dollar sign

When the initial character on a line is a dollar sign, then expression mode is used. For
example, typing

$a = “Hello” + “ world!”

concatenates two string values, Hello and world!, and then assigns the concatenated
value to the variable $a. You can demonstrate that the two string values were concate-
nated by typing

$a

at the Windows PowerShell command line. The concatenated string is the value of the
variable $a. The Windows PowerShell parser, in expression mode, evaluates the expres-
sion $a to the concatenated string and then displays that value on screen.

❑ Begins with a quotation mark

Similarly, if the initial character is a quotation mark, then Windows PowerShell uses
expression mode. For example, to concatenate two strings you can type

“Hello” + “ world!”

and Windows PowerShell echoes the concatenated string, Hello world! to the console.

65

Chapter 4: Using the Interactive Shell

08_946939 ch04.qxp 3/15/07 7:02 PM Page 65

❑ Begins with a dot followed by a number

When the first character on a line is a dot followed by a number, Windows PowerShell
uses expression mode. For example, typing

.75 + 1.5

at the command line causes the value 2.25 to be displayed, after the two numeric values
in the expression have been added together.

Figure 4-2 shows the preceding examples run in Windows PowerShell.

Figure 4-2

The existence of expression mode is a convenient, compared to other command line environments,
where you need explicitly to issue a command for the result of an expression to be displayed onscreen.
Optionally, in Windows PowerShell, you can use the write-host cmdlet to display the result of an
expression. For example to display a string on screen, type the following at the command line:

write-host “Hello world!”

Command Mode Examples
When the first character on the line is an alphabetic character, the Windows PowerShell parser interprets
everything on the line as a Windows PowerShell command. For example, if you type

Hello

Windows PowerShell produces the first error message shown in Figure 4-3. Similarly, if you mistype a
Windows PowerShell command, such as using

get-processes

instead of

get-process

you will see the second error shown in Figure 4-3.

66

Part I: Finding Your Way Around Windows PowerShell

08_946939 ch04.qxp 3/15/07 7:02 PM Page 66

Figure 4-3

Of course, if you correctly type in the name of a cmdlet, for example,

get-process

the currently running processes on the machine are displayed on the PowerShell console.

Another situation in which an initial alphabetic character can be used is when you run a Windows
PowerShell script. I created a very simple script named myGetDate.ps1 and ran the script by typing

myGetDate.ps1

at the command line. This runs the script, assuming that you have saved it to a folder that is specified in
the PATH environment variable. Internally, the script uses the Windows PowerShell get-date cmdlet to
find the current date and time. The result is echoed to the console, as shown in Figure 4-4.

Figure 4-4

Figure 4-5

All built-in Windows PowerShell cmdlets use a singular noun in their verb-noun
naming convention. So, be careful not to use a plural noun when entering the name
of a cmdlet.

67

Chapter 4: Using the Interactive Shell

08_946939 ch04.qxp 3/15/07 7:02 PM Page 67

The combination of a dot followed by a space character, as in the following command,

. “myGetDate.ps1”

executes a Windows PowerShell script in the current folder whether or not the current folder is included
in the value of the PATH environment variable. Since the purpose is to execute the script it, fits well that
the Windows PowerShell parser interprets the entered characters as needing to be executed in command
mode.

If a line begins with the ampersand (&) character then the line following the ampersand is treated as
something to be executed. For example, suppose that you assign the text get-childitem to the variable
$a:

$a = “get-childitem”

You can then execute the get-childitem cmdlet by typing:

&$a

Since the line begins with &, the Windows PowerShell parser interprets the line in command mode. So,
the value of the variable $a is treated as a command, get-childitem, and the get-childitem cmdlet
is executed. Figure 4-6 shows the result.

The two preceding commands (strictly the first is in expression mode, and the second in command
mode) are equivalent to typing

get-childitem

68

Part I: Finding Your Way Around Windows PowerShell

Allowing Windows PowerShell Scripts to Run
Typically, a default installation of Windows PowerShell has restrictions on the running
of scripts, as a security mechanism. The available settings can prohibit all scripts, allow
all scripts, or allow you to specify which digitally signed scripts can execute. To run
scripts, you may need to change a registry setting. You can do that from the Windows
PowerShell command line, using the set-executionPolicy cmdlet or using the
regedit utility.

To change the value of the registry setting from the Windows PowerShell command
line, type the following code (if you want to set the security setting for scripts to
RemoteSigned):

set-executionPolicy remoteSigned

This will allow you to run locally created scripts without the need for signing. See
Figure 4-5 to observe the effect in the registry of running the above command.

I discuss full details of security for Windows PowerShell scripts in Chapter 15. You can
find help on the execution policy for running Windows PowerShell scripts by typing:

get-help about_signing

08_946939 ch04.qxp 3/15/07 7:02 PM Page 68

at the Windows PowerShell prompt. The get-childitem cmdlet is similar in function to typing dir in
the CMD.exe command shell.

Figure 4-6

Mixing Expressions and Commands
A significant advantage of the Windows PowerShell parser having two parsing modes is that you can
mix commands and expressions on the command line.

As mentioned earlier, paired parentheses create a new context for the Windows PowerShell parser to
decide whether command mode or expression mode is appropriate. Parentheses can be nested to any
depth. Each time a new pair of parentheses occurs, the Windows PowerShell parser reevaluates whether
command mode or expression mode parsing is appropriate.

Exploring a Windows System with Windows
PowerShell

In this section, I show you some techniques for exploring the current state of a Windows system using
Windows PowerShell.

Finding Running Processes
The get-process cmdlet allows you to explore the processes running on any Windows system. For its
simplest usage, just type

get-process

on the Windows PowerShell command line. This displays basic information about all currently running
processes on the local machine. By default, the columns of information shown in Figure 4-7 are displayed.

69

Chapter 4: Using the Interactive Shell

08_946939 ch04.qxp 3/15/07 7:02 PM Page 69

Figure 4-7

On many systems, the get-process cmdlet will return multiple screenfuls of information — typically
on a Windows system I am running I see over 70 processes. As noted in Chapter 2, an easy way to make
the output more readable is to pipe the output to More by using the following command:

get-process |
more

The results will then be displayed one screenful at a time. Press the spacebar to see another screenful of
information. Press Enter to get another line of information. However, pressing Enter leads to multiple
message lines being inserted between the results, such as those shown in Figure 4-8. Using the spacebar
is therefore the more practical option.

Figure 4-8

70

Part I: Finding Your Way Around Windows PowerShell

Using Two Windows PowerShell Windows
As you begin to master Windows PowerShell, I suggest that you have two PowerShell
windows open. Use one window to explore the system, and use the other to access the
help system or to use the get-member cmdlet to list the members of Windows
PowerShell objects whose use you are exploring. Also, consider ceasing to use
CMD.exe— and use Windows PowerShell for everything you used to use CMD.exe for.

08_946939 ch04.qxp 3/15/07 7:02 PM Page 70

You have a number of options for filtering output. One option is to use the where-object cmdlet. The
where-object cmdlet lets you filter the results returned by the get-process (or any other) cmdlet.
The results from the get-process cmdlet are piped to the where-object cmdlet. The expression to be
evaluated is contained in paired curly brackets. If an object does not satisfy the expression, it is dis-
carded. Objects that do satisfy the expression are passed to the next part of the pipeline. In the simple
example of filtering processes that follows, the matching objects are passed to the implicit default out-
put, which is the console.

Filtering Processes Using where-object
Suppose that you wanted to see information about the instances of svchost that are running. You could
use the following command:

get-process |
where-object {$_.ProcessName -eq “svchost”}

Be careful to include paired quotes around the name of the process that you want to filter for. If you omit
the paired quotes, an error will occur since the process name is tested for equality to a string value.

Figure 4-9 shows the output on a Windows XP machine.

Figure 4-9

I cover the use of the where-object cmdlet in more detail later in this chapter.

In the preceding example, the get-process cmdlet retrieves information about all running processes on
the system. The objects representing those processes are piped to the where-object cmdlet in the sec-
ond step of the pipeline, where the script block contained inside the braces is used to test whether or not
each object satisfies the criterion specified in the script block. Objects where the test is satisfied are
passed to the next stage in the pipeline.

Let’s look more closely at the contents of the curly brackets (the script block):

{$_.ProcessName -eq “svchost”}

The $_variable (the dollar sign followed immediately by an underscore character) represents the current
object being processed in the pipeline. The specified test, whether the object’s processname property (a
string) is equal to “svchost”) is applied to each object returned by the get-process cmdlet. Since the $

71

Chapter 4: Using the Interactive Shell

08_946939 ch04.qxp 3/15/07 7:02 PM Page 71

variable is an object, use the dot notation followed by the name of a property of that object, in this case
ProcessName to get the value of this property. The value of that property is tested for equality as indi-
cated by the -eq operator. It is tested against the literal string value “svchost”.

Remember that the = operator is the assignment operator in Windows PowerShell — to test for equality
in Windows PowerShell you need to use the -eq operator.

You can use a similar technique to compare the values of other properties of a process with specified val-
ues. To find the properties of a process, use this command:

get-process |
get-member -membertype property |
more

Figure 4-10 shows the first screen of properties of the get-process cmdlet.

Figure 4-10

Similarly, you can find all the methods of the get-process cmdlet by using the following command:

get-process |
get-member -membertype method |
more

Another option for filtering output is to use wildcards. In Windows PowerShell you can use either wild-
cards or regular expressions, as appropriate to a particular situation. Windows PowerShell supports the
following wildcards:

❑ ? — Matches a single character

❑ * — Matches zero or more characters

Filtering Processes Using Wildcards
You can use wildcards when specifying a filter to be applied to objects returned from a command or
pipeline step. For example, if you wanted to find information on processes that include the character
sequence sql you could use the following command:

72

Part I: Finding Your Way Around Windows PowerShell

08_946939 ch04.qxp 3/15/07 7:02 PM Page 72

get-process “*sql*”

which is equivalent to:

get-process –processname “*sql*”

This command returns any process whose name consists of zero or more characters (as indicated by the
first asterisk), followed by the literal character sequence sql, followed by zero or more characters (as
indicated by the second asterisk). Stated more simply, it returns any process where the name of the pro-
cess includes sql.

Figure 4-11 shows the results on a Windows XP machine that is running SQL Server 2005. The results
include the SQL Server 2005 Full Text Search (msftesql), SQL Server 2005 Agent (SQLAGENT90), and the
SQL Server 2005 database engine (sqlservr). On the machine in question, two instances of the SQL
Server 2005 database engine are running.

Figure 4-11

You can achieve a similar result with the where-object cmdlet by using the following command:

get-process |
where {$_.ProcessName -match “sql”}

Finding Out about Services
The get-service Windows PowerShell cmdlet allows you to explore the services available on a
machine. In a simple usage (with no specified parameters):

get-service |
more

you can display all information about all the Windows services which you would normally see in the
Services Microsoft Management Console snap-in, as shown in Figure 4-12. By default, the columns
shown in Figure 4-12 are displayed.

73

Chapter 4: Using the Interactive Shell

08_946939 ch04.qxp 3/15/07 7:02 PM Page 73

Figure 4-12

More typically, you use the get-service cmdlet and filter its output by using the where-object
cmdlet.

Finding Running Services
In this example, you can find all running services on a machine by entering this Windows PowerShell
command:

get-service | where-object {$_.status -eq “running”}

Figure 4-13 shows the results on a Windows XP Pro machine. Notice that the value displayed in the
Status column is consistently “running”.

Figure 4-13

The get-service cmdlet returns a series of service objects — one for each service on the machine. Those
objects are passed through the pipeline to the where-object cmdlet.

The where-object cmdlet filters the objects according to the conditional expression inside the paired
curly brackets. The expression in this case

{$_.status -eq “running”}

74

Part I: Finding Your Way Around Windows PowerShell

08_946939 ch04.qxp 3/15/07 7:02 PM Page 74

specifies that the test is that the value of the status property in each object returned by the get-service
cmdlet has a value equal to the string “running”. In other words, only running services satisfy the test
and are passed to the default formatter and so are displayed to the user.

You can, of course, look for particular running services. For example, if you want to find running ser-
vices that contain the character sequence sql in the service’s name, you could find them using either of
these two commands:

get-service “*sql*” |
where-object {$_.status -eq “running”}

or:

get-service |
where-object {$_.Status –eq “running” –and $_.Name –match “sql”}

Note that the former is more efficient.

Figure 4-14 shows the results on a Windows XP Pro machine that is a developer machine for SQL Server
2005.

Figure 4-14

You could, equally well, find services that are stopped. To find a SQL Server–related service that is not
running, you could use this command:

get-service “*sql*” |
where-object {$_.status -eq “stopped”}

By adding other conditions or filters, you can build up more complex commands if desired.

Finding Other Windows PowerShell Commands
Sometimes you may want to find Windows PowerShell commands that carry out a specific range of
actions. For example, you might want to find out what commands are available that set a value. You can
use the following command:

get-command set-*

75

Chapter 4: Using the Interactive Shell

08_946939 ch04.qxp 3/15/07 7:02 PM Page 75

to find all Windows PowerShell commands where the verb part of the cmdlet name is set. If you hap-
pen to have an installed application whose name begins with the character sequence set-, it will also be
returned.

Strictly speaking, the preceding command may display commands other than Windows PowerShell
cmdlets. If you need to be sure to display only Windows PowerShell cmdlets use the –commandType
parameter in the command:

get-command –commandType cmdlet set-*

You can find all the cmdlets that contain the word “process” using this command:

get-command “*process*” –commandType cmdlet

If you are interested only in knowing about cmdlets that include “process,” it is usually safe to assume
that “process” will be the noun part of a cmdlet name, so you can use the following command:

get-command *-process

Figure 4-15 shows the relevant commands using either of the two preceding approaches.

Figure 4-15

Using Abbreviated Commands
Many commands in Windows PowerShell have compact or abbreviated forms, which allow you to carry
out tasks with less typing. These abbreviated commands are particularly convenient when you are
working from the command line.

There are two ways to save on typing — by using command completion or by using aliases.

Command Completion
Windows PowerShell commands allow you to use the Tab key to complete commands once you have
typed the verb part of a cmdlet name plus the hyphen. For example, if you want to use the get-process
cmdlet, you can type it in fully as in the examples earlier in this chapter. However, if you type

76

Part I: Finding Your Way Around Windows PowerShell

08_946939 ch04.qxp 3/15/07 7:02 PM Page 76

get-pr

and then press the Tab key, you will see

Get-Process

on the screen. When carrying out tab completion, Windows PowerShell, typically, gives an initial upper-
case letter to both the verb and noun parts of a cmdlet name. Since PowerShell is case-insensitive for
cmdlet names this doesn’t cause any undesired change in behavior.

Similarly, if you type

get-se

then press Tab, you will see

Get-Service

on the screen.

If you press the Tab key when there is more than one option available — for example when you hit Tab
after typing

get-p

you will see the earliest option, as judged by alphabetical order, in this case:

Get-PfxCertificate

If you press Tab again, you will see the next option, which is

Get-Process

If you continue to press Tab, you will see the other options for command completion in that setting.
Pressing Tab multiple times in this way allows you to cycle through all available cmdlets that match
what you have typed.

Aliases
Aliases allow you to use short or familiar commands in place of the regular names of Windows
PowerShell cmdlets. This can be useful during the period when you are learning Windows PowerShell
commands, since commands that you already know may also work in PowerShell pretty much as you
expect. However, aliases can also be very useful on the command line at any time when you want to
save on typing.

You should be able to use the following aliases, which substitute for the get-childitem cmdlet.

To use the get-childitem cmdlet to list files and folders in a directory, simply type

get-childitem

77

Chapter 4: Using the Interactive Shell

08_946939 ch04.qxp 3/15/07 7:02 PM Page 77

at the command line, assuming that the current working directory is a file system directory. You will see
a list of files and folders similar to the one shown in Figure 4-16. Notice that the FileSystem provider is
used, since the current working directory is on a file system drive.

Figure 4-16

You should have two aliases available that correspond to the get-childitem cmdlet. First, try the con-
ventional Windows command:

dir

to list the files and folders in the directory. You should get the result shown in Figure 4-16.

Similarly, if you are used to a Unix or Linux environment, you can type

ls

to list the files and folders in the directory. Again the results should be the same as those shown in
Figure 4-16.

I discuss aliases in more detail in Chapter 5.

Working with Object Pipelines
To perform anything but the simplest tasks using Windows PowerShell, you will make use of a pipeline.
A pipeline is a series of commands executed in sequence. Importantly, the objects that result from exe-
cuting the first command in a pipeline are passed to the next command in the pipeline.

In this section, I will introduce several tools that you can use in pipelines.

Sequences of Commands
A pipeline is, essentially, a sequence of commands where objects from one command are passed for pro-
cessing to later commands in the sequence. The separator between elements in the pipeline is the | sym-
bol. Onscreen it is typically displayed as two separate vertical parts similar to a colon (see the command
entered in Figure 4-14 for the onscreen appearance of the pipe symbol).

78

Part I: Finding Your Way Around Windows PowerShell

08_946939 ch04.qxp 3/15/07 7:02 PM Page 78

Filtering Using where-object
In some situations a single cmdlet may retrieve an inconveniently large number of objects. Therefore,
you will often want to filter objects, for example for display or sorting. The where-object cmdlet
allows you to filter objects according to the condition specified in a script block contained in paired curly
brackets. You have seen some examples earlier in this chapter that use the where-object cmdlet. In
addition to the -eq operator, which you saw used earlier in the chapter, you have many other operators
available for use. These are shown in the following table.

Operator Meaning

-lt Less than

-le Less than or equal to

-gt Greater than

-ge Greater than or equal to

-eq Equal to

-ne Not equal to

-contains Contains

-notcontains Doesn’t contain

-like Matches using wildcards

-notlike Negated matching using wildcards

-match Matches using regular expressions

-notmatch Negated matching using regular expressions

-band Bitwise AND

-bor Bitwise OR

-is Is of a specified type

-isnot Is not of a specified type

By default, string comparisons are made case-insensitively. You have the option to make comparisons
case-sensitive using the operators listed in the following table. In addition, there are operators that allow
you specify explicitly that comparisons are case-insensitive.

Operator Meaning

-clt Case-sensitive less than

-cle Case-sensitive less than or equal to

-cgt Case-sensitive greater than

-cge Case-sensitive greater than or equal to

Table continued on following page

79

Chapter 4: Using the Interactive Shell

08_946939 ch04.qxp 3/15/07 7:02 PM Page 79

Operator Meaning

-ceq Case-sensitive equals

-cne Case-sensitive not equal

-clike Case-sensitive matching using wildcards

-cnotlike Case-sensitive failure to match using wildcards

-ccontains Case-sensitive contains

-cnotcontains Case-sensitive doesn’t contain

-cmatch Case-sensitive match using regular expressions

-cnotmatch Case-sensitive failure to match using regular expressions

To find processes that contain the character sequence sql, you can use the following command:

get-process |
where-object {$_.processname -match “sql”}

or you can use the where alias to where-object, as shown here:

get-process |
where {$_.processname -match “sql”}

without changing the meaning. Either will return all processes that contain the character sequence sql.
The –match operator uses regular expression matching. The character sequence .* (a period followed
by an asterisk) matches zero or more alphabetic or numeric characters. In this particular example, you
can simply the command further by omitting those character sequences:

get-process |
where {$_.processname –match “sql”}

Figure 4-17 shows the results of executing the full version of the command on a development machine
running SQL Server 2005. Executing the abbreviated versions of the command returns the same results.

Figure 4-17

80

Part I: Finding Your Way Around Windows PowerShell

08_946939 ch04.qxp 3/15/07 7:02 PM Page 80

The get-process cmdlet returns a set of process objects representing all running processes. The results
are filtered using the where-object cmdlet. The -match operator indicates that the matching process is
to use regular expressions. So, the whole pattern matches zero or more characters, followed by the literal
character sequence sql, followed by zero or more characters.

Modify the command so that you will find all services that begin with the character sequence svc. This
will find all instances of svchost.

get-process |
where-object {$_.processname -match “^svc.*”}

The ^ metacharacter signifies a match for a position just before the first character of a sequence. In other
words, it only matches when the rest of the regular expression pattern occurs at the beginning of the rel-
evant property, in this case the ProcessName property. A metacharacter is a character used in a regular
expression that has a meaning different from its literal significance. Then there is the literal character
sequence svc, then the pattern .* (a period followed by an asterisk).

Sorting
Another task that you will frequently want to carry out is the sorting of objects in a pipeline, according
to some specified criterion or criteria. The sort-object cmdlet allows you to sort objects produced by
an earlier element in a pipeline. You can also use the sort-object cmdlet to sort input objects not sup-
plied from a pipeline.

Suppose that you want to find all running processes that have a handle count in excess of 500. To find
those, simply type:

get-process |
where-object {$_.handlecount –gt 500}

or:

get-process |
where {$_.handlecount -gt 500}

The default behavior is to sort the results alphabetically by the process name, as shown in Figure 4-18,
which may be all you want or need.

However, you may want to find which processes are using the most handles; thus, you may find it more
useful to sort the results by handle count. To do that, use the following command:

get-process |
where {$_.handlecount -gt 500} |
sort-object {$_.handlecount}

81

Chapter 4: Using the Interactive Shell

08_946939 ch04.qxp 3/15/07 7:02 PM Page 81

Figure 4-18

As you can see in Figure 4-19, the results are now sorted by handle count and presented in ascending
order.

Figure 4-19

You can use an abbreviated form of the argument to the sort-object cmdlet in the preceding
command:

get-process |
where {$_.handlecount -gt 500} |
sort-object handlecount

and the same results are displayed.

If you want to present the results in descending order (that is, with the processes with the highest handle
count first), use this command:

82

Part I: Finding Your Way Around Windows PowerShell

08_946939 ch04.qxp 3/15/07 7:02 PM Page 82

get-process |
where {$_.handlecount -gt 500} |
sort-object -descending {$_.handlecount}

or:

get-process |
where {$_.handlecount -gt 500} |
sort-object -descending handlecount

Notice that the -descending parameter is used in the final element in the pipeline. You do not need to
supply a value for the –descending parameter. In fact, if you attempt to supply a value, an error mes-
sage is displayed.

Let’s look at how the following code works:

get-process |
where {$_.handlecount -gt 500} |
sort-object {$_.handlecount}

The get-process cmdlet returns objects corresponding to all processes. The where-object cmdlet (the
abbreviation where is used here) filters the processes so that only those with a handle count greater than
500 are passed to the next step in the pipeline. The sort-object cmdlet sorts the remaining objects
according to the expression in curly brackets. In this case, it sorts the objects according to the value of the
handlecount property of each object.

When you add the -descending parameter, as shown here:

get-process |
where {$_.handlecount -gt 500} |
sort-object -descending {$_.handlecount}

the objects that are returned by the first two elements in the pipeline are sorted in descending order, as
specified by the expression in curly brackets, in this case the value of the handlecount property of each
object.

Grouping
Often you will want to group results by some criterion. For example, you might want to group com-
mands according to the verb part of the cmdlets’ names. The group-object cmdlet allows you to group
results.

In this example, I show you how to group a list of commands by the verb part of the Windows
PowerShell cmdlet name.

At the command line, enter the following command:

get-command |
group-object {$_.verb} |
sort-object count

83

Chapter 4: Using the Interactive Shell

08_946939 ch04.qxp 3/15/07 7:02 PM Page 83

This is a three-step pipeline. The get-command cmdlet retrieves all commands (not only cmdlets). In the
second step, objects are grouped by the value of the verb property. Commands other than Windows
PowerShell cmdlets have no verb property, so the corresponding objects are discarded. The results are
displayed in groups that correspond to the verb part of the cmdlet name sorted by the number of com-
mands using this verb, as shown in Figure 4-20.

Figure 4-20

As with the sort-object cmdlet, the group-object cmdlet can accept a property name as an argu-
ment without using the paired curly braces:

get-command |
group-object verb |
sort-object count

As you can see in Figure 4-20, the default display of grouped objects can make it difficult to see what is
in the group. Often you may want to follow up with other commands to look at one or more groups in
additional detail.

For example, now that the previous command has shown you the verbs available in Windows
PowerShell commands you might want to take a closer look at the commands that use the verb set.

get-command set-*

84

Part I: Finding Your Way Around Windows PowerShell

08_946939 ch04.qxp 3/15/07 7:02 PM Page 84

Figure 4-21 shows the cmdlets which use set as verb. As you can see, it is much easier to see basic infor-
mation about each command in that format.

Figure 4-21

As you saw in Figure 4-20, the default formatting of grouped output is not particularly helpful with
groups containing five or more objects. I discuss formatting output in more detail in Chapter 7.

Pros and Cons of Verbosity
One of the key aspects of the flexibility available to you when you construct Windows PowerShell com-
mands is that you have options to express the same command several ways. One important reason for
this is that it gives you options to create code that is quick and easy to type or that is almost self-docu-
menting because of the “verb hyphen noun” naming convention of Windows PowerShell cmdlets.

Interactive
When you use Windows PowerShell interactively on the command line, you will often want to avoid the
verbose command forms. At least, you will avoid them once you are up to speed on the verbs and nouns
that make up Windows PowerShell commands.

Suppose that you want to find an alias where you already know the full command. For example, suppose
that you want to find the aliases for all cmdlets whose verb is get. You can use the following command:

get-alias |
where {$_.definition -match “^get”}

The ^ metacharacter in the regular expression in paired quotation marks matches the position before the
first character of a matching sequence of characters. More simply, the pattern ^get matches the character
sequence get when that character sequence occurs at the beginning of a string. The result you see will
resemble Figure 4-22.

85

Chapter 4: Using the Interactive Shell

08_946939 ch04.qxp 3/15/07 7:02 PM Page 85

Figure 4-22

Using the get-alias cmdlet on its own returns all available aliases. Unfortunately, by default, it doesn’t
present the results in a particularly useful arrangement, since several screens of information are pro-
duced (depending on the size of your Windows PowerShell console). You can display aliases so that they
are easier to read if you use this command:

get-alias |
more

You will see a listing similar to Figure 4-23.

Figure 4-23

Notice that cmdlets that use the verb get are separated, since the corresponding aliases are presented in
alphabetical order. You can improve the usefulness of the display, as far as cmdlet verbs are concerned,
by modifying the command to

get-alias |
sort-object {$_.definition}

86

Part I: Finding Your Way Around Windows PowerShell

08_946939 ch04.qxp 3/15/07 7:02 PM Page 86

which displays the results alphabetically by the name of the underlying cmdlet or path of an underlying
application. The definition property of an alias object contains the name of the cmdlet.

Of course, there are circumstances that are exceptions to the general case, where you will likely want to
use compact commands on the command line. This book provides one example. I want to help you
grasp the full commands, so I generally provide you with the verbose form of a command, partly in
order to reinforce the verb-singularNoun pattern of many Windows PowerShell commands. I also show
pipelines with each step on a separate line, since that makes it easier for you to appreciate what each
step does. In practice, when you are entering commands at the command line you will, as in the figures,
likely type commands that include several pipeline steps on a single line. However, you can type a
pipeline over several lines if you end each command with the | character.

Stored Commands
Using aliases and abbreviated commands is less appropriate when you write scripts. When you write
Monad scripts I would strongly suggest that you use the full version of the names of Monad cmdlets.
This has the advantage that your code is easier to read when it’s created, since the “verb hyphen noun”
naming convention is so consistent. It also has the advantage that maintenance of code is easier. Another
advantage is that the code is fully portable. For example, if you use an alias in a script, you must be sure
that the alias is present on all target machines. I discuss Monad scripts in greater detail in Chapter 10.

Summary
This chapter showed you the two parsing modes that Windows PowerShell uses:

❑ Expression mode

❑ Command mode

You also saw examples of using the get-process cmdlet to explore running processes on a Windows
machine and examples of using the get-service cmdlet to explore services.

The chapter discussed convenience features — aliases and Tab completion — that make it easier and
faster to enter commands at the Windows PowerShell command line.

Pipelines were described, as well as how you can filter (using the where-object cmdlet), sort (using the
sort-object cmdlet), and group objects (using the group-object cmdlet) in a Windows PowerShell
pipeline.

87

Chapter 4: Using the Interactive Shell

08_946939 ch04.qxp 3/15/07 7:02 PM Page 87

08_946939 ch04.qxp 3/15/07 7:02 PM Page 88

Using Snapins, Startup
Files, and Preferences

Windows PowerShell allows you to configure several aspects that control what happens when you
launch PowerShell and how PowerShell behaves after launching it. You can even add additional
providers and cmdlets to those available by default.

To add further providers and cmdlets, you can load PowerShell snapins in addition to the core
snapins that load by default when Windows PowerShell is started up. A snapin is a .NET assembly
that contains Windows PowerShell providers and/or Windows PowerShell cmdlets.

You can create profile files that customize the behavior of every Windows PowerShell that you
launch. Or you can customize behavior for each user individually.

You can also change the behavior of Windows PowerShell by using aliases. There are many practi-
cal advantages in PowerShell having a unique and consistent behavior. For example, once you
become familiar with the verb-noun syntax convention, it becomes pretty easy to guess what the
name of a command to carry out a particular task might be. However, there are also advantages in
PowerShell having the flexibility to modify the behavior of the command shell to conform to user
expectations or past experience. For example, by providing familiar commands (using aliases)
PowerShell enables users who are familiar with other widely used command line shells to get up
and running straightaway, since, at least in part, they can use commands they are already familiar
with to achieve desired results.

Startup
When you execute a command such as:

PowerShell

09_946939 ch05.qxp 3/15/07 7:02 PM Page 89

or:

PowerShell –PSConsoleFile consoleFileName

from the command line, several things happen. The relevant console file is loaded. If no console file is
specified, then the default console is loaded. If you specify a console file to load, the specified console
file is loaded, if available. If not, then the default console is loaded.

A console file for Windows PowerShell version 1.0 has the suffix .psc1. You can create a console file to
capture the current configuration settings of PowerShell, using the export-console cmdlet. A console
file summarizes configurations for a PowerShell console. The console file is an XML file with the follow-
ing basic structure:

<?xml version=”1.0” encoding=”utf-8”?>
<PSConsoleFile ConsoleSchemaVersion=”1.0”>
<PSVersion>1.0</PSVersion>
<PSSnapIns />

</PSConsoleFile>

The behavior of the console that is loaded is open to modification by commands contained in any profile
files that have been created on the machine.

Snapins
Once the default console file or a specified console file is loaded, the PowerShell snapins are loaded. A
snapin is a group of PowerShell cmdlets or providers that, typically, share some functionality. You can
create your own snapins or use snapins created by third parties. By default, the core PowerShell snapins
are loaded. The core PowerShell snapins each have their own namespace.

To find out which snapins are loaded in a PowerShell console, use the following command:

get-pssnapin

A list of the loaded snapins is displayed. In a typical PowerShell 1.0 installation, you can expect to see at
least the following snapins:

❑ Core — Contains cmdlets that are used to affect the PowerShell engine, such as get-help,
get-command, and get-history. Also contains the FileSystem, Registry, Alias,
Environment, Function, and Variable providers. The namespace is Microsoft
.PowerShell.Core.

❑ Host — Contains cmdlets that are used by the PowerShell host. Cmdlets include start-
transcript and stop-transcript. The namespace is Microsoft.PowerShell.Host.

❑ Management — Contains cmdlets that are used to manage Windows components. Cmdlets
include get-service and get-childitem.The namespace is Microsoft.PowerShell
.Management.

❑ Security — Contains cmdlets that manage PowerShell security such as get-authenticode
Signature and get-acl. The namespace is Microsoft.PowerShell.Security.

❑ Utility — Contains utility cmdlets that manipulate data such as get-member, write-host,
and format-list. The namespace is Microsoft.PowerShell.Utility.

90

Part I: Finding Your Way Around Windows PowerShell

09_946939 ch05.qxp 3/15/07 7:02 PM Page 90

Figure 5-1 shows the snapins on a machine with the default PowerShell installation.

Figure 5-1

You can see which cmdlets belong to a particular snapin using a pipeline which uses the get-command
and where-object cmdlets. To see the cmdlets available in the Microsoft.PowerShell.Core name-
space, use the following command:

get-command -commandType cmdlet |
where-object {$_.PSSnapin -match “Core”}

The get-command cmdlet retrieves objects for all available commands. The presence of the command
Type parameter with a value of cmdlet means that only objects for cmdlets are passed to the second
step of the pipeline. The script block used with the where-object cmdlet uses regular expression
matching to test whether the name of the snapin contains the character sequence Core. In a default
install, only the Microsoft.PowerShell.Core snapin matches, so the cmdlets in that snapin are
displayed on screen, as you can see in Figure 5-2.

Figure 5-2

91

Chapter 5: Using Snapins, Startup Files, and Preferences

09_946939 ch05.qxp 3/15/07 7:02 PM Page 91

If you want to demonstrate which snapins contain which PowerShell providers, use the following
command:

get-psprovider |
format-table Name, PSSnapin

Figure 5-3 shows the results. Notice that in a default PowerShell install, all but the Certificate
provider are contained in the Core snapin. The Certificate provider is contained in the Security
snapin.

Figure 5-3

The cmdlets in the Microsoft.PowerShell.Core snapin are:

❑ add-history — Adds entries to a session history.

❑ add-PSSnapin — Adds one or more PowerShell snapins to the current console.

❑ export-console — Exports any configuration changes made to the current console. Using
this cmdlet overwrites any existing console file of the specified name.

❑ foreach-object — Processes a set of objects according to code inside an accompanying script
block.

❑ get-command — Retrieves information about a command.

❑ get-help — Retrieves help information, typically about a specified cmdlet or PowerShell lan-
guage feature.

❑ get-history — Retrieves the session history.

❑ get-PSSnapin — Lists the snapins registered in a session.

❑ invoke-history — Invokes a command stored in the session history.

❑ remove–PSSnapin — Removes one or more PowerShell snapins from the current console process.

❑ set-PSDebug — Turns PowerShell script debugging on or off and, optionally, sets a trace level.
(I discuss debugging in more detail in Chapter 18).

❑ where-object — Filters objects in a pipeline according to a test specified in an accompanying
script block.

Remember, the names of cmdlets are treated as case-insensitive by the PowerShell parser, so you can
write them all in lowercase or add uppercase characters to highlight the start of, for example, a new
noun. The choice is yours.

92

Part I: Finding Your Way Around Windows PowerShell

09_946939 ch05.qxp 3/15/07 7:02 PM Page 92

The cmdlets in the Microsoft.PowerShell.Host snapin are:

❑ start-transscript — Starts a transcript of a PowerShell session

❑ stop-transcript — Stops a transcript of a PowerShell session

The cmdlets in the Microsoft.PowerShell.Management snapin are:

❑ add-content — Adds content to a specified item or items

❑ clear-content — Removes content from an item, often a file, but does not delete the item or
file

❑ clear-item — Clears an item but does not remove it

❑ clear-ItemProperty — Removes a value from a specified property

❑ convert-path — Converts a path to a provider path

❑ copy-item — Copies an item, for example a file, to another location using a PowerShell
provider

❑ copy-itemProperty — Copies a property between locations or namespaces

❑ get-childitem — Retrieves the child items of a specified location

❑ get-content — Retrieves the content of an item, for example a file, at a specified location

❑ get-eventlog — Retrieves event log data

❑ get-item — Retrieves an object which represents an item in a namespace

❑ get-itemProperty — Retrieves properties of a specified object

❑ get-location — Displays the current location

❑ get-process — Retrieves information about running processes on a machine

❑ get-PSDrive — Retrieves information about one or more drives

❑ get-PSProvider — Retrieves information about one or more PowerShell providers

❑ get-service — Retrieves information about services on a machine

❑ get-wmiobject — Produces a WMI object or lists WMI classes available on a machine

❑ invoke-item — Invokes an executable or opens a file

❑ join-path — Combines elements of a path into a path

❑ move-item — Moves an item from one location to another

❑ move-itemProperty — Moves a property from one location to another

❑ new-item — Creates a new item in a namespace

❑ new-itemProperty — Creates a new item property at a specified location

❑ new-PSDrive – Creates a new drive

❑ new-service — Creates a new service on a computer

❑ pop-location — Pops a previous location from the stack and uses it to define the current
working location

93

Chapter 5: Using Snapins, Startup Files, and Preferences

09_946939 ch05.qxp 3/15/07 7:02 PM Page 93

❑ push-location — Pushes a location on to the stack

❑ remove-item — Deletes an item using a specified PowerShell provider

❑ remove-itemProperty — Removes a property (and its value) from a specified location

❑ remove-PSDrive — Removes a drive

❑ rename-item — Renames an existing item

❑ rename-itemProperty — Renames a property without moving it

❑ resolve-path — Resolves the wildcard character(s) in a path

❑ restart-service — Stops a service and then restarts it

❑ resume-service — Makes a suspended service resume running

❑ set-content — Sets the content in a specified item, typically a file

❑ set-item — Sets the value of an item

❑ set-itemProperty — Sets the value of a property at a specified location to a specified value

❑ set-location — Sets the value of the current working location to a specified location

❑ set-service — Sets the value of properties of a service

❑ split-path — Finds the component parts of a path and makes specified components avail-
able for pipeline processing

❑ start-service — Starts a service

❑ stop-process — Stops a process

❑ stop-service — Stops a service

❑ suspend-service — Suspends a service

❑ test-path — Tests whether or not a path exists

The cmdlets in the Microsoft.PowerShell.Security snapin are:

❑ ConvertFrom-SecureString — Exports a secure string to a safe, serialized format

❑ ConvertTo-SecureString — Converts a supplied normal string to a secure string

❑ get-acl — Retrieves the access control list associated with an object

❑ get-authenticodeSignature — Retrieves the signature associated with a file

❑ get-credential — Retrieves a credential object

❑ get-executionPolicy — Retrieves the PowerShell script execution policy

❑ get-PfxCertificate — Retrieves the Pfx certificate information

❑ set-acl — Sets the access control list for an object

❑ set-authenticodeSignature — Applies an authenticode signature to a file

❑ set-executionPolicy — Sets the PowerShell script execution policy

94

Part I: Finding Your Way Around Windows PowerShell

09_946939 ch05.qxp 3/15/07 7:02 PM Page 94

The cmdlets in the Microsoft.PowerShell.Utility snapin are:

❑ add-member — Adds a user-defined custom member to an object

❑ clear-variable — Removes the value from a variable without removing the variable itself

❑ compare-object — Compares two streams of objects

❑ ConvertTo-html — Converts the input to an HTML table

❑ export-alias — Exports a list of aliases to a file

❑ export-clixml — Produces an XML representation of a PowerShell object or objects

❑ export-csv — Creates a list of comma-separated values from intput objects

❑ format-custom — Formats output display in a custom way

❑ format-list — Formats output display as a list

❑ format-table — Formats output display as a table

❑ format-wide — Formats output as a customizable table

❑ get-alias — Retrieves available aliases

❑ get-culture — Retrieves information about the current culture

❑ get-date — Retrieves the current date and time

❑ get-host — Retrieves information about the current host

❑ get-member — Displays information about the members of an input object or objects

❑ get-traceSource — Displays information about trace sources and their properties

❑ get-UICulture — Retrieves information about the current UI culture

❑ get-unique — Retrieves unique items from a sorted list

❑ get-variable — Retrieves a PowerShell variable and its value

❑ group-object — Groups objects according to a specified criterion or multiple criteria

❑ import-alias — Imports a list of aliases from a file

❑ import-clixml — Imports a clixml file and builds an object from its content

❑ import-csv — Imports a comma-separated value file and creates an object or objects

❑ invoke-expression — Executes a string argument as an expression

❑ measure-command — Measures the execution time for a script block or cmdlet

❑ measure-object — Calculates measures of a property of an object such as average

❑ new-alias — Creates a new PowerShell alias

❑ new-object — Creates a new object

❑ new-timespan — Creates a timespan object

❑ new-variable — Creates a new PowerShell variable

95

Chapter 5: Using Snapins, Startup Files, and Preferences

09_946939 ch05.qxp 3/15/07 7:02 PM Page 95

❑ out-default — The default controller of PowerShell output

❑ out-file — Sends output to a specified file

❑ out-host — Displays pipeline output on the host

❑ out-null — Sends output to null, in effect deleting the output

❑ out-printer — Sends output to a printer

❑ out-string — Converts pipeline output to a string or strings

❑ read-host — Reads a prompted value from the host, allowing a script to capture user input

❑ remove-variable — Removes a variable

❑ select-object — Selects objects or properties based on criteria specified in its parameters

❑ select-string — Allows you to search for character patterns in a string or file

❑ set-alias — Creates a new alias

❑ set-date — Sets the system date and time

❑ set-traceSource — Configures trace sources

❑ set-variable — Sets the value(s) of a variable, creating a new variable if necessary

❑ sort-object — Sorts input objects according to a specified criterion or multiple criteria

❑ start-sleep — Suspends execution for a specified period of time

❑ tee-object — Sends objects to two destinations

❑ trace-command — Turns on tracing according to a specified configuration for a specified
expression

❑ update-formatData — Updates format data files

❑ update-typeData — Updates type data files

❑ write-debug — Writes a debug message to the host

❑ write-error — Writes an error object to a pipeline

❑ write-host — Writes objects to the host

❑ write-output — Writes an object or objects to a pipeline

❑ write-progress — Writes a record of progress to the host

❑ write-verbose — Writes a string to the host’s verbose display

❑ write-warning — Writes a warning message to the host

I will describe the behavior of the cmdlets in the preceding list in detail in later chapters, as well as list
their parameters in full and demonstrate how they can be put to use.

Additional snapins can be loaded at startup using a console file. If no console file is specified at startup,
then the cmdlets in the snapins listed earlier in this section are loaded.

96

Part I: Finding Your Way Around Windows PowerShell

09_946939 ch05.qxp 3/15/07 7:02 PM Page 96

Profiles
Once the console and the core PowerShell snapins have been loaded, the profile files are processed. A
profile is a PowerShell script that runs automatically when Windows PowerShell starts up. It can contain
commands to add aliases, define functions, and configure the console in other ways. I show you a sam-
ple profile file later in this section.

The options for profile file locations are listed here. The profile files, if present, are run in the following
order:

❑ %windir%\system32\WindowsPowerShell\v1.0\profile.ps1 — Sets the profile for any
PowerShell console for all users

❑ %windir%\system32\WindowsPowerShell\v1.0\ Microsoft.PowerShell_profile.ps1 —
Sets a profile for all users but only if they are loading the default Windows PowerShell console

❑ %UserProfile%\My Documents\WindowsPowerShell\profile.ps1 — Sets a user-specific
profile for any PowerShell console that a specific user is loading

❑ %UserProfile%\My Documents\WindowsPowerShell\Microsoft.PowerShell_profile
.ps1 — Sets a user-specific profile for a PowerShell console but only for the default Windows
PowerShell console

If there is more than one profile file on a specific machine and there is any conflict between the com-
mands in those files, the commands in the more specific profile file take precedence.

An administrator can set up profiles that are run for all users. To do that for the default Windows
PowerShell console the profile file, Microsoft.PowerShell_profile.ps1, is created in the folder
%windir%\System32\WindowsPowerShell\v1.0. Alias definitions and function definitions found in
that file, if present, are used for all users of that machine.

Profile files are PowerShell script files containing statements that allow you, or an administrator, to set
aliases, to declare functions, and to manipulate variables. The PowerShell executable looks in the previ-
ously specified locations for profile.ps1 files (for a user-selected console) or Microsoft.PowerShell
_Profile.ps1 files (for the Windows PowerShell console-specific profiles). If the files are present those
script files are executed, subject to the constraints of the execution policy. The default execution policy is
Restricted. Before you run a profile when you launch Windows PowerShell, you can set the execution
policy to Signed (in which case you need to digitally sign the profile file before it will run) or set the
execution policy to RemoteSigned or Unrestricted.

By default, when you start PowerShell, the profile files mentioned in the previous section are executed, if
they exist. However, you have an option to skip the execution of user profile files by using the -noprofile
switch when you start the PowerShell command shell. So, to start PowerShell without executing user
profiles simply type

PowerShell -noprofile

at the command prompt.

97

Chapter 5: Using Snapins, Startup Files, and Preferences

09_946939 ch05.qxp 3/15/07 7:02 PM Page 97

You can find out if a user profile has been created by typing the following command:

test-path $profile

If the user profile exists, True is displayed in the console.

You can view the location of the user profile by typing

$profile

at the command prompt. The path for the profile file is displayed.

You can open the user profile in Notepad by typing:

notepad $profile

Figure 5-4 show the results of executing the preceding commands. On the machine in question, a simple
profile using the start-transcript cmdlet has been created.

Figure 5-4

Profile.ps1
The content of a profile.ps1 file may use the set-alias statement (to define aliases for a range of
cmdlets) and function definitions to allow functions to replace cmdlets or provide convenient functional-
ity. As you become more familiar with PowerShell, you are likely to add an increasing number of utility
functions so that function definitions may figure increasingly prominently in your own profile files. If
you create a large profile file you may find a noticeable slowing in the time to launch PowerShell.

98

Part I: Finding Your Way Around Windows PowerShell

09_946939 ch05.qxp 3/15/07 7:02 PM Page 98

A profile file is a PowerShell script file. If you set the execution policy to Restricted, no profile files are
executed.

You use the set-alias cmdlet to create an alias for a cmdlet. When you use the set-alias cmdlet in a
profile file that alias is available every time you start Windows PowerShell (subject to being overridden
by a higher-priority profile file). You can use any cmdlet as the target of an alias, but not a program. You
can’t, for example, use an alias to substitute for the exit command or create an alias for the ipconfig
program. The following command:

set-alias stop exit

causes an error message to be displayed when you attempt to use stop as an alias for exit.

The Example profile.ps1
Windows PowerShell comes with an example profile.ps1 file. It is located in the C:\WINDOWS\
system32\windowspowershell\v1.0\examples folder. The code included, apart from copyright
notice and disclaimer, in the version at the time of writing is shown below. Notice that it creates a
number of aliases and defines some simple functions.

set-alias cat get-content
set-alias cd set-location
set-alias clear clear-host
set-alias cp copy-item
set-alias h get-history
set-alias history get-history
set-alias kill stop-process
set-alias lp out-printer
set-alias ls get-childitem
set-alias mount new-drive
set-alias mv move-item
set-alias popd pop-location
set-alias ps get-process
set-alias pushd push-location
set-alias pwd get-location
set-alias r invoke-history
set-alias rm remove-item
set-alias rmdir remove-item
set-alias echo write-object

set-alias cls clear-host
set-alias chdir set-location
set-alias copy copy-item
set-alias del remove-item
set-alias dir get-childitem
set-alias erase remove-item
set-alias move move-item
set-alias rd remove-item
set-alias ren rename-item
set-alias set set-variable
set-alias type get-content

function help

99

Chapter 5: Using Snapins, Startup Files, and Preferences

09_946939 ch05.qxp 3/15/07 7:02 PM Page 99

{
get-help $args[0] | out-host -paging

}

function man
{

get-help $args[0] | out-host -paging
}

function mkdir
{

new-item -type directory -path $args
}

function md
{

new-item -type directory -path $args
}

function prompt
{

“PS “ + $(get-location) + “> “
}

& {
for ($i = 0; $i -lt 26; $i++)
{

$funcname = ([System.Char]($i+65)) + ‘:’
$str = “function global:$funcname { set-location $funcname } “
invoke-command $str

}
}

In this chapter, I will look in more detail at the use of the set-alias cmdlet.

Aliases
Windows PowerShell supports creating aliases for PowerShell commands (that is, for cmdlets), includ-
ing the use of parameters. An alias is, essentially, an alternative name used to run a cmdlet.

One reason you might use aliases is that you are familiar with a particular operating system or tool and
you wish to use the commands that you are already familiar with to carry out frequently performed
tasks. Another reason to use aliases is to save on typing. For example, if you want to retrieve a list of all
running processes, you can use the full syntax:

get-process

or with an explicit wildcard:

get-process *

100

Part I: Finding Your Way Around Windows PowerShell

09_946939 ch05.qxp 3/15/07 7:02 PM Page 100

Alternatively, you can use the alias in the command:

gps

or:

gps *

to achieve the same thing.

Similarly, if you want to list files contained in a folder, you can achieve that using the full PowerShell
command:

get-childitem

But if you are familiar with the current Microsoft command shell, you might prefer to use:

dir

Or, if you use a Linux shell, you might prefer to use:

ls

Each of those options is shorter than the full syntax and is familiar to large numbers of administrators.
These aliases are provided by default in a PowerShell install.

In this example, I show you how to find all aliases available on your system.

There is a potential trap in the flexibility that PowerShell gives you to create aliases
if you attempt to execute scripts that contain aliases in the code but they aren’t avail-
able on the machine in question. I suggest that you confine your use of aliases to
your own command line work with PowerShell. Alternatively, you can agree with
colleagues on an acceptable list of aliases to have available on your company’s sys-
tems and include the creation of the necessary aliases in profiles on all machines.
Remember the need for updating as the requirements of individuals or groups
change over time.

In general, I recommend avoiding the use of aliases in PowerShell scripts. If you are
going to share scripts with other users, the use of aliases (particularly if they are
nonstandard) will make the scripts more difficult to read and maintain, at least for
some users. For example, not all users will be familiar with the ls alias, although it
will be second nature to Unix administrators. If you use a custom alias, or list of cus-
tom aliases, then your scripts become either less portable (if the aliases aren’t set
outside the script on all machines the script will likely fail) or more cumbersome to
create (you will need to add set-alias statements at the beginning of each script).

101

Chapter 5: Using Snapins, Startup Files, and Preferences

09_946939 ch05.qxp 3/15/07 7:02 PM Page 101

To do this, remember that PowerShell exposes many features of a Windows system, including aliases,
as drives, analogous to hard disk drives. To see the drives available on your system, you can type this
command:

get-psdrive

at the command line. All the drives on your system are displayed, as shown in Figure 5-5.

Figure 5-5

As you can see in Figure 5-5, one of the drives has the name Alias. You can use that drive similarly to
the way you use drives and folders on a hard drive. To see all available aliases, with the results paged,
type

cd alias:

to switch to the alias drive. Then type

get-childitem |
more

or, assuming that the dir alias is available on your system,

dir |
more

to display all aliases. Figure 5-6 shows one screen of results on a Windows XP machine. You may prefer
to examine aliases using the get-alias cmdlet that I introduce later in this chapter.

The command get-psdrive exposes all the parts of the Windows system that PowerShell shows to the
user as drives. This includes the alias drive. Under the covers, Windows PowerShell uses one of the
available providers. Earlier in this chapter, I showed you how to find the available providers using the
get-psprovider cmdlet.

102

Part I: Finding Your Way Around Windows PowerShell

09_946939 ch05.qxp 3/15/07 7:02 PM Page 102

Figure 5-6

You switch to the alias drive using the command cd alias:. If you omit the colon at the end of the com-
mand, an error message is displayed.

The get-childitem cmdlet retrieves all aliases. Piping the results to more gives you the convenience of
reading one screen of results at a time.

The default formatter displays the results in three columns: CommandType, Name, and Definition. The
content in the CommandType column is the same for all aliases, so you may prefer to display only the
Name and Definition columns. To do that, use the following command (assuming that you have
already selected the alias drive):

get-childitem |
select-object Name, Definition |
more

The select-object cmdlet allows you to display only the desired properties of the objects of interest,
in this case aliases. The aliases are not sorted, although they appear to be in the first screen of results.
Inspect further screens of results to confirm that they are not ordered.

To order the aliases by name, use this command:

get-childitem |
select-object Name, Definition |
sort-object Name |
more

Figure 5-7 shows one screen of the sorted data.

103

Chapter 5: Using Snapins, Startup Files, and Preferences

09_946939 ch05.qxp 3/15/07 7:02 PM Page 103

Figure 5-7

As before, the get-childitem cmdlet retrieves all child items in the alias drive from the alias
provider. That is, it retrieves objects corresponding to all defined aliases.

The select-object cmdlet specifies which properties of the child items are to be passed along the
pipeline. In this case, the Name and Definition properties are selected and passed on. I used a posi-
tional property parameter for the select-object cmdlet. If you want to make the property parame-
ter explicit, use the following form of the command:

get-childitem |
select-object -property Name, Definition |
sort-object Name |
more

The sort-object cmdlet and its parameter specify that the objects in the pipeline are to be sorted
according to the value of their Name property. If you want to review all members of the sort-object
cmdlet, use the following command:

get-command sort-object | get-member

Let’s move on now to look at some of the key cmdlets that come with PowerShell.

PowerShell supports five cmdlets that allow you to access or manipulate aliases:

❑ export-alias

❑ get-alias

❑ import-alias

❑ new-alias

❑ set-alias

104

Part I: Finding Your Way Around Windows PowerShell

09_946939 ch05.qxp 3/15/07 7:02 PM Page 104

In the following sections, I will describe what each of these cmdlets does and show you examples of how
you can use them.

Microsoft, or third-party providers, may in future support additional cmdlets. Also, you can create your
own functions or filters. You can use the command

get-command *-alias

to confirm the supported cmdlets, functions, and filters available on your system for manipulating
aliases.

The export-alias Cmdlet
The export-alias cmdlet allows you to export a list of aliases to a file. You can export aliases in
comma-separated value format or script format. The default format is the comma-separated value
format.

To export the current alias list to a text file, use a command like this:

export-alias c:\Alias.txt

The above command uses an implicit positional path parameter. If you want to make that parameter
explicit in the command, use this form:

export-alias -path c:\Alias.txt

You can, for example, open c:\Alias.txt in Notepad. Alternatively, you can use PowerShell to display
the content, using the get-content cmdlet, as follows:

get-content c:\Alias.txt

Figure 5-8 shows one screen of the content of c:\Alias.txt. Notice that the values are in comma-
separated format.

Figure 5-8

105

Chapter 5: Using Snapins, Startup Files, and Preferences

09_946939 ch05.qxp 3/15/07 7:02 PM Page 105

The export-alias cmdlet takes each of the aliases in the current alias list and writes the values of the
relevant members of the objects to a file.

The get-content cmdlet allows you to display the content of a file. By default, PowerShell creates two
useful aliases for get-content: cat and type.

You can export the alias list as script by using the –as parameter. The following command exports the
alias list to a script file, c:\Alias.txt.

export-alias –path C:\Alias.txt –as Script

Use this command to open the file in Notepad.

notepad C:\Alias.txt

Notice in Figure 5-9 that there is a list of commands using the set-alias cmdlet.

Figure 5-9

If you create multiple alias list files, you can use the –NoClobber parameter to test whether or not the
file already exists. The following command produces an error message when executed, since the
C:\Alias.txt file already exists and the –NoClobber parameter is specified.

export-alias –path C:\Alias.txt –as Script –NoClobber

To append an alias list to an existing file, use the –append parameter. The following command appends
an alias list to the file C:\OldAlias.txt:

export-alias –path C:\OldAlias.txt -append

106

Part I: Finding Your Way Around Windows PowerShell

09_946939 ch05.qxp 3/15/07 7:02 PM Page 106

The get-alias Cmdlet
The get-alias cmdlet allows you conveniently to retrieve information about available aliases on a
system.

To retrieve a list of all aliases on a system, use any of the following commands:

get-alias

or:

get-alias *

or:

get-alias –Name *

You will likely display more than a screenful of information. Use:

get-alias | more

or:

get-alias |
out-host -paging

to display information one screenful of aliases at a time. The two preceding commands do the same. In
fact, more is an alias that means out-host –paging. The out-host cmdlet specifies that output is
directed to the console. If the –paging parameter is present output is displayed one screen at a time.
More data is displayed when the user chooses.

You can filter output from the get-alias cmdlet to retrieve information relating to specific verbs or
nouns by using the where-object cmdlet and regular expressions.

To display aliases where the noun of the cmdlet is process, use the following command:

get-alias |
where-object {$_.Definition -match “.*-process”}

Figure 5-10 shows the results. Notice that the cmdlets corresponding to each alias has process as its noun
part.

Figure 5-10

107

Chapter 5: Using Snapins, Startup Files, and Preferences

09_946939 ch05.qxp 3/15/07 7:02 PM Page 107

The get-alias cmdlet without a parameter or value returns objects representing all aliases on the sys-
tem. The where-object cmdlet filters those objects according to the expression contained in the paired
curly brackets.

The $_.Definition part of the expression refers to the Definition property of the current object in
the pipeline. It is the Definition property that holds the full name of the cmdlet corresponding to each
alias. The -match parameter specifies that regular expressions are to be used to test the value. The

-match “.*-process”

part tries to match zero or more characters, followed by a literal hyphen, followed by the literal sequence
of characters process. Less formally, it will match any verb followed by a hyphen and the noun name
process (that is, all cmdlets whose noun part is process).

The import-alias Cmdlet
The import-alias cmdlet retrieves a list of aliases in a file. Assuming that you have aliases defined in a
file d:\UniqueAliases.txt, you can retrieve those using the following command:

import-alias -path d:\UniqueAliases.txt

Using the import-alias command will generate error messages if an alias is already in use. However,
if you have bypassed aliases in a user profile.ps1 files using

PowerShell -noprofile

you can then add aliases using import-alias.

If you want to use the objects created by the import-alias cmdlet in a pipeline, use the –passthru
parameter.

The new-alias Cmdlet
The new-alias cmdlet allows you to create a new alias, associating an alias with the name of a cmdlet
or function.

You use the name of the new-alias cmdlet, followed by the name of the alias, followed by the name of
the cmdlet to which the alias refers. For example, to create a new alias called getpr for the get-process
cmdlet, use the following command:

new-alias getpr get-process

Or, with the parameter names in full:

new-alias –Name getpr –Value get-process

Notice that the cmdlet name is supplied as the value of the –Value parameter.

108

Part I: Finding Your Way Around Windows PowerShell

09_946939 ch05.qxp 3/15/07 7:02 PM Page 108

You can then use the newly created alias in a command to display running processes. For example, to
display processes whose name begins with sql, use the following command:

getpr sql*

Figure 5-11 shows the results on a machine running SQL Server 2005.

Figure 5-11

The –option parameter allows you to set optional properties of the alias. The following are the allowed
values of the –option parameter:

❑ None — This sets no options.

❑ AllScope — The alias is available in all scopes.

❑ Constant — The alias cannot be changed, even by using the –force parameter of the set-
alias cmdlet.

❑ Private — The alias is available only in the scope specified by the –scope parameter.

❑ ReadOnly — The alias cannot be changed unless you use the –force parameter.

The –scope parameter specifies the scope of an alias. The allowed values are global, local, and
script. The default value is local.

The set-alias Cmdlet
The set-alias cmdlet allows you to create a new alias or change an existing alias. If used when the tar-
get alias doesn’t exist, the set-alias cmdlet does the same thing as the new-alias cmdlet. It maps the
name of an alias to the name of a cmdlet.

To create an alias called date for the get-date cmdlet, use the following command:

set-alias date get-date

or:

set-alias –Name date –Value get-date

109

Chapter 5: Using Snapins, Startup Files, and Preferences

09_946939 ch05.qxp 3/15/07 7:02 PM Page 109

You can then use the new alias as you would the get-date cmdlet. For example, to display the current
date and time, simply type the following command:

date

You can use the alias with the same parameters as the get-date cmdlet. For example, to use the year
parameter and set it to 1966, use the following command:

date -year 1966

Figure 5-12 shows the results of executing the preceding two commands.

Figure 5-12

Be careful when setting custom aliases using the set-alias cmdlet. If the value of the
ErrorActionPreference preference is set to Continue (see the section on preferences later in this
chapter), then if you set up an alias XXX for a nonexistent cmdlet get-processes (remember the noun
in the name of a PowerShell cmdlet is always singular):

set-alias XXX get-processes

no error message is displayed. However, when you later attempt to use the alias:

XXX

an error message is displayed, as shown in Figure 5-13.

Figure 5-13

The screenshot shows testing of the XXX alias immediately after it was created on the command line.
However, if you include such a faulty set-alias statement in a PowerShell script, the error may not be

110

Part I: Finding Your Way Around Windows PowerShell

09_946939 ch05.qxp 3/15/07 7:02 PM Page 110

detected for some time, particularly if the alias was used only inside a conditional statement in the
script. This type of possible scenario emphasizes that you need to test all your PowerShell code to make
sure that all possible errors are covered.

The Help Alias
You can use the help alias in place of the get-help command. Strictly speaking, what I am calling the
Help alias is a function defined in the example profile.ps1 file shown earlier in this chapter:

function help
{

get-help $args[0] | out-host -paging
}

The Help function is defined as being the same as executing the get-help cmdlet with one argument,
with the result being piped to the out-host cmdlet with the -paging parameter. The out-host cmdlet
displays output on the command line. The –paging parameter specifies that output is to be displayed
one page at a time. Effectively this means that when you type:

Help someArgument

it is the same as typing:

get-help someArgument |
out-host -paging

or:

get-help someArgument |
more

So, to get paged help on the get-command cmdlet simply type:

help get-command

You will see paged help material as shown in Figure 5-14.

Figure 5-14

111

Chapter 5: Using Snapins, Startup Files, and Preferences

09_946939 ch05.qxp 3/15/07 7:02 PM Page 111

You can use the –detailed and –full parameters with the help function just as you would with the
get-help cmdlet.

Command Completion
PowerShell offers another cool feature to reduce the number of keystrokes that you have to type: com-
mand completion. You begin typing a command or part of a cmdlet and then press the Tab key to have
PowerShell complete the cmdlet.

In this example, I show you how command completion works in the registry. PowerShell exposes parts
of the registry as the drives HKCU: and HKLM:. To switch to the HKLM: drive, type

cd HKLM:

at the command prompt. Notice, in Figure 5-15, that the prompt changes to reflect the new selected drive
(assuming that the value returned by the prompt function includes the result from the get-location
cmdlet). I explain the prompt function in the “Prompts” section later in this chapter.

Figure 5-15

To move down the hierarchy to Software, type

cd so

then press the Tab key. Command completion causes the rest of the word Software to be added (as
shown in Figure 5-15).

Then type

\mi

and press the TAB key. The appearance is now as shown in Figure 5-16. PowerShell has completed the
word Microsoft on the test system. It has also added HKLM: following the command cd.

112

Part I: Finding Your Way Around Windows PowerShell

09_946939 ch05.qxp 3/15/07 7:02 PM Page 112

Figure 5-16

When you press the Return key you navigate to the Software\Microsoft folder.

Prompts
PowerShell allows you to customize the command prompt. The prompt is defined by the prompt func-
tion. You can include a function definition for the prompt function in a profile file.

The prompt function returns a string, which is then displayed to the user at the beginning of each line in
the command shell window.

At times, command completion gets in the way rather than helps. For example, if
you type a single character, then press Tab, you may end up with the name of a file
in the current directory, rather than a cmdlet. Sometimes, you will find that you
need to delete all the characters on the line and start again, which tends to defeat the
object of using command completion, which ought to increase user convenience.

Command completion seems to work poorly, if at all, for verbs. If, however, you
type a verb, then the hyphen, you will often only need to type one or two letters of
the noun in a cmdlet name.

When using command completion, you may notice slight inconsistencies in the casing
of the text completed, compared to what you typed. Since PowerShell is case-insensi-
tive this doesn’t change the behavior of the command, but it can be a little confusing
at times to see characters that you have typed replaced by those in a different case.

113

Chapter 5: Using Snapins, Startup Files, and Preferences

09_946939 ch05.qxp 3/15/07 7:02 PM Page 113

The function definition shown earlier in the example profile.ps1 file is the default:

function prompt
{

“PS “ + $(get-location) + “> “
}

This definition uses the literal string PS followed by a space character, followed by the result returned by
the get-location cmdlet, followed by a right arrow, followed by a space character. The get-location
cmdlet, as its name suggests, retrieves the current location. The concatenated string is then displayed at
the beginning of each line.

In principle, you can use any PowerShell code to generate a string to use as the prompt. For example, if
you want to display the date and time as a prompt, you can use the following definition:

function prompt
{
“” + $(get-date) + “ > “
}

Figure 5-17 shows the use of the function and the new prompt.

Figure 5-17

Notice that there is an empty string (paired quotation marks with nothing between them) as the first
part of the function definition. If you use

$(get-date) + “ > “

in the third line, the desired prompt will not be displayed. See Figure 5-18.

Figure 5-18

114

Part I: Finding Your Way Around Windows PowerShell

09_946939 ch05.qxp 3/15/07 7:02 PM Page 114

Instead, the string PS followed by a greater than symbol is displayed, as shown in Figure 5-18. The code
in the function definition asks PowerShell to attempt to add a datetime object to a string object, which
doesn’t work, so the fall-back prompt is displayed. Adding an empty string, as shown earlier, resolves
that difficulty. The PowerShell parser is then able to work out that you want to create one string for dis-
play. The PowerShell parser does a significant amount of automatic type conversion — which makes
PowerShell powerful but provides you with considerable flexibility.

To return the prompt to showing the current location, type the following:

function prompt
{

“PS “ + $(get-location) + “> “
}

Preference Variables
You can control some aspects of PowerShell by using preference variables. A preference variable is a
variable whose value allows you to express a preference about how PowerShell should behave in a spec-
ified situation. For example, the value of the $ErrorActionPreference variable allows you to specify
how PowerShell should behave if an error is encountered.

To see the preference variables on your system, use all of the following commands:

getvariable:*preference*
getvariable:maximum*
getvariable:report*

Figure 5-19 shows the results of running the preceding commands.

Figure 5-19

115

Chapter 5: Using Snapins, Startup Files, and Preferences

09_946939 ch05.qxp 3/15/07 7:02 PM Page 115

As you can see in Figure 5-19, all preference variables and their current values can be displayed using
simple commands. If, however, you want to see the value of a specified preference variable, simply type
its name on the command line. For example, to see the current value of the $ErrorActionPreference
variable, simply type

$ErrorActionPreference

on the command line. The value of the preference variable is then displayed.

Summary
In this chapter, I introduced you to several pieces of Windows PowerShell functionality that you can
influence at startup.

A PowerShell snapin is a .NET assembly that contains cmdlets and/or providers whose functionality is
in some way related.

Windows PowerShell allows you to use profile files to customize the behavior of the PowerShell console,
either for all users on a machine or for an individual user.

Aliases allow you to use familiar commands from other command line environments. You can use a
number of aliases that are built-in or create your own.

The export-alias, get-alias, import-alias, new-alias, and set-alias cmdlets allow you to
work with aliases.

116

Part I: Finding Your Way Around Windows PowerShell

09_946939 ch05.qxp 3/15/07 7:02 PM Page 116

Parameters

In some situations, you can issue a Windows PowerShell command simply by using the name of a
cmdlet or function. This, typically, results in the default behavior of the cmdlet. (If there is a
required parameter, you are prompted to provide it.) The cmdlet behaves as if some implicit
parameter has been supplied that specifies how the cmdlet is to execute. For example, if you issue
the command

get-command

information about all available commands is displayed in the PowerShell console. The behavior is
the same as if you issue either of the following forms of the command:

get-command *

or:

get-command –name *

In the two preceding commands, you supply a parameter value (in this case the wildcard *,
which matches all command names) that specifies the commands for which information should
be displayed.

In some situations, you need to name the parameter before you can supply a value for it. In such
situations, the parameter is termed a named parameter. In other situations, you don’t need to pro-
vide a name for some parameters. The position of the parameter value in relation to the position of
other unnamed parameter values determines how the PowerShell parser interprets the value that
you supply. Parameters for which you can, but don’t need to, supply a name are termed positional
parameters.

10_946939 ch06.qxp 3/15/07 7:03 PM Page 117

Using Parameters
You can use Windows PowerShell commands or functions without specifying any parameters. To
retrieve information about all running processes, for example, you can use the get-process cmdlet and
simply type:

get-process

Typically, you will see more than a screen of processes listed. The busier the machine, the more difficult
it is to see what processes are running. You can use parameters to better focus the results returned by the
get-process cmdlet. For example, with the get-process cmdlet, you can use a processName param-
eter, an ID parameter or an inputObject parameter to specify how the cmdlet is to execute.

Windows PowerShell parameters are often used by providing a cmdlet name, then a parameter name
followed by a space character, then the parameter value. For example, to retrieve information about all
running svchost processes, type:

get-process -processName svchost

The cmdlet’s name is get-process. The parameter’s name is processName and must be immediately
preceded by a minus sign (or hyphen, if you prefer). The parameter value is svchost.

If there are no whitespace characters in the value supplied for a parameter, you don’t need to supply
paired quotation marks or paired apostrophes around the parameter value. So, the command

get-process –processName “svchost”

is equivalent to the previous command. However, if the parameter value you want to supply contains, for
example, a space character, you must enclose the value in paired quotation marks or paired apostrophes.

If the parameter value you supply is a literal value with no contained expression, then paired quotation
marks and paired apostrophes are functionally equivalent. Thus,

get-process –processName “svchost”

which uses paired quotation marks and

get-process –processName ‘svchost’

produce the same result, as you can see in Figure 6-1.

118

Part I: Finding Your Way Around Windows PowerShell

10_946939 ch06.qxp 3/15/07 7:03 PM Page 118

Figure 6-1

When you use paired quotation marks the parameter value is examined for any expressions to be evalu-
ated. Since there are none in this example, it behaves as a simple literal value. When you use paired
apostrophes, the content is always treated as if it is a literal value.

In some situations, paired quotation marks will achieve the behavior you want. In others, you need
paired apostrophes. For example, suppose that you had assigned the string svchost to a variable $a:

$a = “svchost”

If you then use the command:

get-process –processName “$a”

the value of parameter is arrived at by treating $a as an expression, in this case the string svchost.
However, if you use paired apostrophes:

get-process –processName ‘$a’

Windows PowerShell behavior when using paired quotation marks and paired
apostrophes is not always the same. When you use paired apostrophes, the value is
interpreted literally. When you use paired quotation marks, any expression con-
tained in the paired quotation marks is evaluated.

119

Chapter 6: Parameters

10_946939 ch06.qxp 3/15/07 7:03 PM Page 119

the content of the paired apostrophes is treated as a literal and the get-process cmdlet tries to find
processes named $a. There are none, so instead of returning information about svchost processes, an
error is displayed, as you can see in Figure 6-2.

Figure 6-2

If you supply neither paired quotation marks nor paired apostrophes:

get-process –processName $a

then $a is evaluated, in this case to the string svchost.

If you want to specify two values for a parameter, separate those values by using a comma and, option-
ally, one or more space characters. For example to retrieve information about just the svchost and
wmiprvse processes, type the following command:

get-process -processname svchost,wmiprvse

The Windows PowerShell parser ignores any whitespace between the comma and the second value, as
shown here:

get-process -processname svchost, wmiprvse

Likewise, you can have one or more space characters before the comma, as shown here:

get-process -processname svchost , wmiprvse

without changing the behavior of the command.

Each of the preceding three commands retrieves and displays information about processes named
svchost and wmiprvse.

120

Part I: Finding Your Way Around Windows PowerShell

10_946939 ch06.qxp 3/15/07 7:03 PM Page 120

If you want to specify three or more values for a parameter, simply use a comma (plus optional space
character(s) to improve readability, if you like) to separate each value. For example, to retrieve informa-
tion about notepad, svchost, and wmiprvse processes, use this command:

get-process -processname notepad, wmiprvse, svchost

Parameters that take boolean values don’t allow a value to be specified in the normal way. For example,
the paging parameter for the out-host cmdlet doesn’t allow a value to be specified by separating the
parameter value from the parameter name by a space. You have two options. The first is to simply sup-
ply the parameter name. The second is to separate the parameter name from the parameter value with a
colon. When you type:

get-process | out-host –paging

or:

get-process | out-host –paging:$true

the processes returned are displayed one screenful at a time. Each of the preceding commands does the
same thing as:

get-process | more

That is, it pages the output that reaches the second component in the pipeline. When you specify the
paging parameter without a value, you are in effect supplying a value $true. If you use the out-host
cmdlet without specifying the –paging parameter, you use the default value of the parameter, which is
False.

The colon separator is used to specify boolean values for parameters. Notice that if you supply an
explicit value, you write $true or $false, which is the PowerShell syntax for the corresponding
boolean values True and False.

Finding Parameters for a Cmdlet
When you are finding your way around Windows PowerShell, you may not be familiar with all the
available parameters for a cmdlet. One simple way to address this is to display all of the help file for a
cmdlet and pipe the result to more or to the out-host cmdlet to get paged output. So, you type:

get-help get-help |
more

or:

get-help get-help |
out-host -paging

The get-help cmdlet displays help information as determined by its accompanying argument and by
the presence or not of the –detailed or –full parameters. You will find information about parameters
for the desired cmdlet in the Syntax and Parameters section of the help information.

121

Chapter 6: Parameters

10_946939 ch06.qxp 3/15/07 7:03 PM Page 121

If you want to avoid unnecessary scrolling, you can display only the information about syntax and
parameters. For example, if you want to view the syntax for the get-service cmdlet, you can type:

(get-help get-service).syntax

Figure 6-3 shows the result.

Figure 6-3

By enclosing (get-help get-service) in paired parentheses, you are specifying first that Windows
PowerShell should produce an object and then that it’s the syntax property of that object that you want
to see displayed. If you typed

get-help get-service.syntax

an error message would be displayed.

You can use a similar technique to display the detailed parameter information that you would otherwise
display by using the –full parameter. To display the full parameter information for the get-service
cmdlet, use the following command:

(get-help get-service).parameters

As you can see in Figure 6-4, the detailed information about the parameters of the get-service cmdlet
are displayed.

Figure 6-4

122

Part I: Finding Your Way Around Windows PowerShell

10_946939 ch06.qxp 3/15/07 7:03 PM Page 122

Notice in Figure 6-4 that the information about the -name parameter indicates that it is a positional
parameter. I will discuss positional parameters later in this chapter, in the “Positional Parameters” sec-
tion. The -include parameter is specified as being a named parameter.

As is often the case in Windows PowerShell, there is an alternate syntax to do the same thing. You can use
the –parameter parameter of the get-help cmdlet with a * wildcard. To display detailed information on
all the parameters of the get-service cmdlet, use either of the following commands:

get-help –name get-service –parameter *

or:

get-help get-service –parameter *

Notice that when using the preceding syntax you don’t use paired parentheses to enclose any part of the
command. The –name parameter of the get-help cmdlet is positional (explained more fully later in this
chapter), so you don’t need to supply its name.

It can be useful to combine the two approaches. So, you might, for example, get the names of the get-
help cmdlet’s parameters using this command:

(get-help get-help).syntax

and look at the details of how to use a selected parameter, in this example the –name parameter, using
the following command:

get-help get-help –parameter name

I find it can be a useful way of working if you keep a Windows PowerShell window open primarily to
explore cmdlet syntax and another open for using the cmdlets.

There are several other properties in addition to the parameters and syntax properties. If you want to
see all available properties of an object of interest, use this command:

get-help get-service |
get-member –memberType properties|
format-table name, definition

This will display the names of all the members that are properties.

As you can see in Figure 6-5, among the members are the details and the examples properties. The
details property shows you the Name and Synopsis sections of the relevant help information. The
examples property shows you examples of how you can use the cmdlet of interest.

123

Chapter 6: Parameters

10_946939 ch06.qxp 3/15/07 7:03 PM Page 123

Figure 6-5

Named Parameters
The most common way to use parameters is to specify the name of a parameter and supply its value. For
some parameters, termed named parameters, this is the only way you can use them. If you don’t supply
the parameter name, an error is displayed. As I mentioned (and demonstrated) earlier in this chapter, the
name of the parameter is immediately preceded by a minus sign (or hyphen, if you prefer). One or more
space characters separate the name of the parameter from its value.

The simplest use of named parameters is to supply a literal value for the value of the parameter. So if
you are only interested in SQL Server–related services, you can type:

get-service -displayName “SQL Server*”

The displayName parameter is a named parameter, as you can see in the lower part of Figure 6-6.

You can combine multiple literal values separated by commas and optional space characters. However,
you may sometimes want the flexibility offered by wildcards, as shown in the preceding example.

124

Part I: Finding Your Way Around Windows PowerShell

10_946939 ch06.qxp 3/15/07 7:03 PM Page 124

Figure 6-6

Wildcards in Parameter Values
In parameter values, Windows PowerShell supports two wildcard characters. The asterisk matches zero
or more characters of any type. The question mark matches a single character.

When you name all parameters that you use in a command, there’s no ambiguity about which parame-
ters you intend to use. For example, to retrieve all services beginning with w you can use the command:

get-service -Include w*

If you then want to exclude services whose name begins with the characters wm, you can add an
exclude parameter as follows:

get-service -Include w* -Exclude wm*

As shown in Figure 6-7, the first of those two commands displays all services whose name begins with w.
The second command displays all of those commands except those that begin with the characters wm.
Compare the two results, and you’ll notice that the WmdmPmSN, Wmi and WmiApSrv services are returned
by the first command but not by the second on the machine in question.

The get-service cmdlet retrieves objects corresponding to each service on the machine. The include
parameter specifies that if the name of the service begins with a w, the object should be passed along the
pipeline. However, any service whose name starts with wm is discarded, as specified by the value of the
exclude parameter.

125

Chapter 6: Parameters

10_946939 ch06.qxp 3/15/07 7:03 PM Page 125

Figure 6-7

The pipeline in this example is implicit. All objects are piped to the default formatter. The default for-
matter contains information about a generally useful way to display information about the objects repre-
senting each service. I discuss formatting of output in more detail in Chapter 7.

Named parameters can be specified in any order. You can check that by running the command:

get-service -exclude wm* -include w*

You can also use abbreviated names for the names of each parameter. If you specify an abbreviated name
that the Windows PowerShell parser can identify unambiguously, then it is the same as specifying the
parameter name in full.

You can retrieve the same objects as specified in the previous example using the command:

get-service -inc w* -ex wm*

Figure 6-8 shows the information about the specified services.

Notice, too, in Figure 6-8 that if you supply an ambiguous abbreviated parameter name, then an error
message is displayed. In this case, the command

get-service -in w* -ex wm*

is ambiguous. There are two parameters that begin with in, the include parameter and the
inputObject parameter.

126

Part I: Finding Your Way Around Windows PowerShell

10_946939 ch06.qxp 3/15/07 7:03 PM Page 126

Figure 6-8

When such an ambiguous situation produces an error, you can simply add another letter to the parame-
ter’s abbreviated name and try again or use the get-help cmdlet to display all relevant available
parameter names:

get-help get-service –parameter i*

and adjust the command accordingly.

To use abbreviated parameter names simply provide enough of the parameter name to enable the
Windows PowerShell parser to identify the parameter. To remind yourself of the available parameters,
use the techniques described.

Positional Parameters
For selected parameters, Windows PowerShell allows you to omit the parameter name completely. You
can simply type the value of the parameter without providing its name. To be able to disambiguate the
meaning of parameter values supplied in that way, Windows PowerShell needs to know the position
where the parameter is used in relation to any other parameter values whose parameter name has not
been specified. These parameters are, therefore, called positional parameters.

You can discover positional parameters for a cmdlet by using the select-object command. For exam-
ple, to find the positional parameters for the get-process cmdlet, use this command:

(get-help get-process).parameters.parameter |
select-object name, position

127

Chapter 6: Parameters

10_946939 ch06.qxp 3/15/07 7:03 PM Page 127

The values in the Position column are displayed so that parameters with a numeric value in that column
are displayed first. However, if you want to display only information about the positional parameters,
you can add a step to the pipeline that filters objects by using the where-object cmdlet:

(get-help get-process).parameters.parameter |
where-object {$_.position -ne “named”} |
select-object name, position

This returns information about the positional parameters for the get-process cmdlet. One parameter,
the name parameter for the get-process cmdlet, is a positional parameter, as you can see in Figure 6-9.
It can be used positionally if it is the first parameter (which is not a named parameter) after the cmdlet
name, as indicated by its position property value of 1.

In the first form of the command, using (get-help get-process) in parentheses returns an object that
contains the help for the get-process cmdlet. You then use one of the properties of that object, the
parameters object of which you use the parameter property.

The select-object cmdlet in the second step of the pipeline selects the name and position of each
parameter. If a parameter can be used as a positional parameter, its allowed position is returned. If a
parameter can be used only as a named parameter, the value of the position property is named, indi-
cating that the parameter name must be supplied when it is used.

In the second form of the command using the where-object cmdlet the script block in curly brackets
uses the –ne (not equal) operator to discard objects that have the value named for their position prop-
erty. The effect of this is that only objects representing positional parameters are passed to the third step
of the pipeline.

Using a positional parameter is very straightforward. You simply use the value of the parameter where
you would, for a named parameter, have used the name and value pair.

In this example, you find all processes beginning with w using a named parameter then carry out the
same task using the parameter as a positional parameter.

Figure 6-9

128

Part I: Finding Your Way Around Windows PowerShell

10_946939 ch06.qxp 3/15/07 7:03 PM Page 128

The verbose syntax (that is, supplying the name of the parameter) to find all processes beginning with w is

get-process -Name w*

Using a positional parameter, simply type:

get-process w*

All processes whose process name begins with w are displayed, as shown in Figure 6-10.

Figure 6-10

The -name parameter can be used in position 1 after the cmdlet name. It is the only positional parameter
for the get-process cmdlet. So, when you type:

get-process w*

the Windows PowerShell parser knows that the only parameter which can legally be supplied without a
parameter name is the -name parameter. That must be supplied in position 1, as here. Named parame-
ters are ignored by the parser when determining position. So, the string w* is interpreted as being the
value of the positional parameter -name.

Some cmdlets, for example the trace-command cmdlet, have multiple positional parameters. (The
trace-command cmdlet is used in debugging, which I describe in Chapter 18.) To view the parameters
of that cmdlet, type:

(Get-Help trace-command).parameters.parameter |
select-object name, position

As you can see in Figure 6-11, the trace-command cmdlet has multiple positional parameters.

129

Chapter 6: Parameters

10_946939 ch06.qxp 3/15/07 7:03 PM Page 129

Figure 6-11

Notice that not only does the trace-command cmdlet have multiple positional parameters, but, more
confusing, two parameters have a value of 2 in the position column.

To understand what happens, take a look at using two positional parameters together. In this example,
use the –name and –expression positional parameters. The following command executes the command
get-process notepad and displays debugging information. Notice that in the first form the names of
the –name and –expression parameters are used explicitly.

trace-command -name metadata,parameterbinding,cmdlet -expression {get-process
notepad} –pshost

However, the command works identically if you omit the names of the –name and –expression
parameters.

trace-command metadata,parameterbinding,cmdlet {get-process notepad} –pshost

The pshost parameter is a named parameter that specifies that the output of the trace is to be sent to the
Windows PowerShell console (or host). You can move the –pshost parameter so that it is before the two
positional parameters, and the command behaves as before. As I mentioned earlier, named parameters
are ignored when the parser determines the position of a positional parameter. The value intended as the
value of the –name parameter still comes first, and the value of the –expression parameter still comes
second, so it all works nicely.

trace-command -pshost metadata,parameterbinding,cmdlet {get-process notepad}

But why are there two parameters, -expression and –command in Figure 6-11 that have a position of 2?

To see an overview of the parameters of the trace-command cmdlet, execute the following command:

(get-help trace-command).syntax

Figure 6-12 shows the results.

130

Part I: Finding Your Way Around Windows PowerShell

10_946939 ch06.qxp 3/15/07 7:03 PM Page 130

Figure 6-12

It may not be obvious in Figure 6-12, but the parameters of the trace-command cmdlet can be used in
two parameter sets. The first parameter set is this. Notice that it contains the –name and –expression
parameters (in bold).

Trace-Command [-name] <string[]> [-expression] <scriptblock> [[-option] {<None> |
<Constructor> | <Dispose> | <
Finalizer> | <Method> | <Property> | <Delegates> | <Events> | <Exception> | <Lock>
| <Error> | <Errors> | <Warn
ing> | <Verbose> | <WriteLine> | <Data> | <Scope> | <ExecutionFlow> | <Assert> |
<All>}] [-filePath <string>] [
-debugger] [-pSHost] [-listenerOption {<None> | <LogicalOperationStack> |
<DateTime> | <Timestamp> | <ProcessId
> |
<ThreadId> | <Callstack>}] [-inputObject <psobject>] [-force] [<CommonParameters>]

The second parameter set contains the –name and –command parameters.

Trace-Command [-name] <string[]> [-command] <string> [[-option] {<None> |
<Constructor> | <Dispose> | <Finalize
r> | <Method> | <Property> | <Delegates> | <Events> | <Exception> | <Lock> |
<Error> | <Errors> | <Warning> | <
Verbose> | <WriteLine> | <Data> | <Scope> | <ExecutionFlow> | <Assert> | <All>}] [-
filePath <string>] [-debugge
r] [-pSHost] [-listenerOption {<None> | <LogicalOperationStack> | <DateTime> |
<Timestamp> | <ProcessId> | <ThreadId> |
<Callstack>}] [-inputObject <psobject>] [-argumentList <Object[]>] [-force]
[<CommonParameters>]

If you use the first parameter set, then the positional parameter in position 2 is the –expression parame-
ter. If you use the second parameter set, the positional parameter in position 2 is the –command parameter.

131

Chapter 6: Parameters

10_946939 ch06.qxp 3/15/07 7:03 PM Page 131

Common Parameters
Windows PowerShell supports six common parameters. As the name suggests, these parameters are avail-
able generally for use with all cmdlets.

The common parameters are:

❑ Debug — A boolean value that specifies whether or not debugging information is collected.
Debugging information is displayed only if the cmdlet supports generation of debugging infor-
mation.

❑ ErrorAction — Specifies behavior when an error is encountered. The allowed values are
Continue (which is the default behavior), Stop, Silently Continue, and Inquire.

❑ ErrorVariable — Specifies the name of a variable that stores error information. The specified
variable is populated in addition to $error.

❑ OutBuffer — Specifies the number of objects to buffer before calling the next cmdlet in the
pipeline.

❑ OutVariable — Specifies a variable to store the output of a command or pipeline.

❑ Verbose — If this parameter is specified, then verbose output is generated, if the cmdlet sup-
ports verbose output. If the cmdlet does not support –verbose output, then the parameter has
no effect.

Each of the common parameters has an abbreviation that you can use in its place, as shown in Table 6-1.

Ubiquitous Parameter Abbreviation

-Debug -db

-ErrorAction -ea

-ErrorVariable -ev

-OutputBuffer -ob

-OutputVariable -ov

-Verbose -vb

If a cmdlet changes system state two other parameters are available:

❑ Confirm — The user is asked to confirm an action before it is carried out.

❑ WhatIf — The user is shown the actions that the system would have taken if the command had
been executed. The command does not change the system state.

132

Part I: Finding Your Way Around Windows PowerShell

10_946939 ch06.qxp 3/15/07 7:03 PM Page 132

Using Variables as Parameters
So far I have shown you how to provide literal values as the values for parameters. However, you can
also use Windows PowerShell variables as the values for parameters.

A Windows PowerShell variable is named with a dollar sign followed by uppercase or lowercase alpha-
betic characters, numeric digits, and/or the underscore character.

To use a variable as the value of the parameter, you simply provide the variable name where you would
provide a literal value.

In this example, I will show you how to use a variable to supply a parameter value to a cmdlet.

In examples earlier in this chapter, you looked for processes that began with w, using the command

get-process w*

You can achieve the same thing using a variable. First, assign the wildcard w* to the variable $a:

$a = “w*”

Then you can supply the value of the variable to the cmdlet:

get-process -name $a

or, since the –name parameter of the get-process cmdlet is a positional parameter:

get-process w*

As you can see in Figure 6-13, processes that begin with w are returned.

The Windows PowerShell parser recognizes that a -name parameter is being supplied for use with the get-
process cmdlet. It has access to the values of all in-scope variables. The value of the $a variable is retrieved
and used as the value of the -name parameter. The string w* includes a wildcard character, *, which matches
zero or more characters. Processes that have an initial literal w followed by zero or more additional charac-
ters are displayed. In other words, processes whose process name begins with w are displayed.

Do not use the variable $__ in your code. Windows PowerShell uses that variable as
an internal variable in pipelines. Scoping of variables often prevents ambiguity for
the Windows PowerShell parser, but I strongly recommend that if you use the
underscore character it be combined with alphabetic characters or numeric digits in
a variable name.

I will describe Windows PowerShell variables in more detail in Chapter 10.

133

Chapter 6: Parameters

10_946939 ch06.qxp 3/15/07 7:03 PM Page 133

Figure 6-13

You can also write some Windows PowerShell code to get the value for an optional parameter from the
user by using the read-host cmdlet. If you omit a required parameter, you are prompted by PowerShell
to enter a value.

The read-host cmdlet accepts a value supplied by the user. You must supply a prompt to be displayed
to the user, with the prompt parameter. So, to ask a user to supply a value for processes to be searched
for, you use this command:

read-host -prompt “Enter name of processes to search for”

Notice in Figure 6-14 that Windows PowerShell automatically supplies a colon and a space character
after the prompt that you provide.

Figure 6-14

Any value supplied is simply echoed back to the console. However, once you assign the user-supplied
value to a variable, you can use the value elsewhere in your code. To assign the user-supplied value to
the variable $a, use this code:

$a = read-host -prompt “Enter name of processes to search for”

The user will enter the string w*, which will find the same processes as in the previous example, assum-
ing that no processes whose name begins with w have been stopped or started in the interim.

134

Part I: Finding Your Way Around Windows PowerShell

10_946939 ch06.qxp 3/15/07 7:03 PM Page 134

Confirm that the user-supplied value has been captured by typing:

$a

which simply echoes the current value of the variable to the console.

Then you can use the user-supplied value to display processes whose name begins with w, as shown in
Figure 6-15, by using the following command:

get-process -name $a

as in the previous example.

Figure 6-15

The read-host cmdlet assigns the value supplied to the user to the variable $a.

The Windows PowerShell parser can then use the current value of that variable when it parses the
command:

get-process -processname $a

This technique allows you to get values from the user at runtime when you use Windows PowerShell
code in script files. Using scripts provides you with much more flexibility after you have tested your
code on the command line. Scripts are introduced in Chapter 10.

Summary
When you use a Windows PowerShell cmdlet, you will often use the cmdlet with one or more parame-
ters. A Windows PowerShell cmdlet’s parameter is supplied as a name immediately preceded by a
hyphen. The value is separated from the name by one or more whitespace characters. A parameter’s
value may contain multiple elements separated by commas.

Named parameters are parameters whose name must be supplied. A positional parameter (of which a
cmdlet may have none or more than one) can be interpreted by the PowerShell parser without the
parameter’s name being specified.

135

Chapter 6: Parameters

10_946939 ch06.qxp 3/15/07 7:03 PM Page 135

10_946939 ch06.qxp 3/15/07 7:03 PM Page 136

Filtering and
Formatting Output

In this chapter, I cover two techniques that you may find useful to take control of your output. You
look at how you can take the potentially enormous amount of information returned from some
cmdlets and how to format and filter that information.

Filtering determines whether or not an object is passed on to the next step in a pipeline. You
invoke filtering by using some cmdlets and specifying tests that determine what objects to pass
along the pipeline. The where-object cmdlet is a powerful tool for filtering according to a test
specified in a Windows PowerShell expression. You can also use the select-object cmdlet to
select specified properties to be passed along the pipeline.

Formatting is concerned with the display of information, both in general and in determining
where the objects are supplied to the final step in a pipeline. In many of the pipelines you have
seen so far, there has been an invisible final step that uses the default formatter to define how the
results of a command or pipeline are displayed. However, the default formatter doesn’t always
format the output in the way you need. Windows PowerShell provides two cmdlets, format-
table and format-list, which allow you to take more control of the display of the information
in objects that emerge from earlier steps in the pipeline.

Using the where-object Cmdlet
The where-object cmdlet filters the objects presented to it. Most commonly, when you use the
where-object cmdlet on the command line, the objects it filters will come from an earlier step in
a pipeline.

11_946939 ch07.qxp 3/15/07 7:03 PM Page 137

In a standard install, you are likely to have two aliases available to use in place of the full form of
where-object: where and ?. To find the aliases available for the where-object cmdlet on your system
use this command:

get-childitem alias:\ |
where-object -filterScript{$_.Definition -match “where”}

or:

get-childitem alias:\ |
where-object {$_.Definition -match “where”}

The –filterScript parameter is used to filter objects. As the name of the parameter suggests, its value
is a script. The script is enclosed in paired curly braces. The –filterScript parameter is a positional
parameter in position 1.

Simple Filtering
The argument to the where-object cmdlet is a Windows PowerShell expression that is the value of the
–filterScript parameter, and it returns a boolean value. The expression is contained in paired curly
brackets and uses a number of operators, which I describe later in this section.

You might want to find out which services on a machine are running. Of course, you can do that using
the Services Microsoft Management Console snapin, but you can also do it easily from the Windows
PowerShell command line. The get-service cmdlet finds all services installed on a machine. This
example uses the where-object cmdlet to display information only about running services.

If you are unsure about what members are available on the objects returned by the get-service
cmdlet, use

get-service |
get-member

to display all the public members.

For the purposes of this example, it is the status property that is of interest, since the value of the
status property shows whether a service is running or stopped. Sometimes you may not be familiar
with the values allowed for a property or that apply in a particular setting. In that situation, one way to
get a handle on the available values is to use the property with the select-object cmdlet. For exam-
ple, to find out what values of the status property apply to objects on a machine, type this command
and then scan the displayed results:

get-service |
select-object name, status

You will see output similar to Figure 7-1, which shows part of the output on one machine.

138

Part I: Finding Your Way Around Windows PowerShell

11_946939 ch07.qxp 3/15/07 7:03 PM Page 138

Figure 7-1

An alternate approach to do a similar thing is to use the format-table cmdlet to display the columns
of interest, as in the following command:

get-service |
format-table name, status

When you have multiple screens of unsorted information, it can be hard to scan each line to check which
values are present. You can use the group-object cmdlet to find the values for the status property.
Use the following code to do that:

get-service |
select-object name, status |
group-object status

Figure 7-2 shows the result. Instead of having to scan the values for the status property for over 100
objects, Windows PowerShell does the work for you.

Figure 7-2

As you can easily see, only two values are in use for the status property: stopped and running. In
addition, some services can be paused, in which case the status property has a value of paused. So to
find out which services are running on the machine, you need to find services where the value of the
status property is running. The following code does that:

get-service |
where-object {$_.status -eq “running”}

Figure 7-3 displays part of the results from the command.

139

Chapter 7: Filtering and Formatting Output

11_946939 ch07.qxp 3/15/07 7:03 PM Page 139

Figure 7-3

If you prefer to use aliases when writing the preceding command you can use:

gsv |
where {$_.status -eq “running”}

or:

gsv |
? {$_.status -eq “running”}

Having the status column at the left of the display may not be ideal for you. Later in the chapter I will
show you how you can improve the way Windows PowerShell displays results.

The get-service cmdlet, when used with no parameters, returns objects representing all services on
the machine.

The where-object step in the pipeline filters the objects representing services according to the value of
their status property. The $_ variable is a special variable that essentially means “this object.” In other
words, the $_ variable successively refers to each of the objects passed into the pipeline from the get-
service cmdlet. The -eq operator tests each object’s status property to see if the service is running.

Using Multiple Tests
In more complex pipelines, you may want to filter on more than one criterion. You can use multiple fil-
ters based on the where-object cmdlet in the same pipeline.

In this example, I show you two ways to combine two filter criteria in a pipeline. The desired services
are running services that include the sequence of characters sql in their name. This allows you to see
which SQL Server services are running. Choose another service if you don’t have SQL Server installed.

Testing for “sql” in a service name isn’t entirely specific, since some other programs,
for example mySQL, would also match the specified criteria. You need to know your
system to decide whether an approach such as this is sufficiently specific.

In Windows PowerShell, you cannot use = to test for equality. The = operator is the
assignment operator. Use the -eq operator instead.

140

Part I: Finding Your Way Around Windows PowerShell

11_946939 ch07.qxp 3/15/07 7:03 PM Page 140

One technique is simply to use the where-object cmdlet in two steps of a pipeline. To do that, use this
command:

get-service |
where-object {$_.status -eq “running”} |
where-object {$_.name -match “.*sql.*”}

Figure 7-4 shows the results on a development machine where SQL Server 20050 and Analysis Services
are running.

Figure 7-4

A second approach is to combine two filter criteria (or more if you want) using the -and operator. The fol-
lowing command applies both filter criteria using a single pipeline step with the where-object cmdlet:

get-service |
where-object {$_.status -eq “running” -and $_.name -match “.*sql.*”}

Figure 7-5 shows the results on the same machine as the previous code. The services that you see on a
machine depend, for example, on which SQL Server components you installed on it.

Figure 7-5

First, look at the approach that uses the where-object cmdlet twice in a three-step pipeline.

get-service |
where-object {$_.status -eq “running”} |
where-object {$_.name -match “.*sql.*”}

141

Chapter 7: Filtering and Formatting Output

11_946939 ch07.qxp 3/15/07 7:03 PM Page 141

The get-service cmdlet returns objects representing all services on the machine. The results are piped
to the first where-object step, where-object {$_.status -eq “running”}, which passes objects
where the value of the status property is running to the next step of the pipeline. All those objects
passed to the third step of the pipeline represent running services, so the next use of the where-object
cmdlet, where-object {$_.name -match “.*sql.*”}, filters the objects that represent running ser-
vices so that only those services whose name includes the character sequence sql are passed to the
default formatter.

An alternative approach uses two conditions with a single where-object clause, as follows:

get-service |
where-object {$_.status -eq “running” -and $_.name -match “.*sql.*”}

This uses the get-service cmdlet to pass all services to the second step of the pipeline.

The where-object cmdlet applies two tests when filtering objects. The -and operator specifies that
an object must satisfy two tests before it is passed along the pipeline First, as specified by the test
$_.status -eq “running”, the value of the status property must be running (in other words, the
service is running). Those objects where that test is satisfied must also include the character sequence
sql in the value of their name property, as specified by $_.name -match “.*sql.*”. The -match opera-
tor uses regular expressions when matching a name. The .* (a dot followed by an asterisk) matches
zero or more characters. The literal character sequence, sql, specifies that those three characters must
occur in sequence. Finally, the pattern .* (a dot followed by an asterisk) specifies that the literal
sequence is followed by zero or more characters of any type. In other words, the name must include
the character sequence sql in any position.

I have shown you how to combine two filters using the where-object cmdlet. As with many situations
in PowerShell, there are other approaches. For example, the command

get-service *sql* |
where-object {$_.status -eq “running}

combines a filter in the value of the positional –name parameter of the get-service cmdlet with a
pipeline step that uses the where-object cmdlet with a single test. In day-to-day use this approach is
likely to be the best.

The technique to combine two tests using the where-object cmdlet can be adapted to find running (or
stopped) services which meet any other criterion of interest to you.

Using Parameters to where-object
The where-object cmdlet can take two parameters, -filterScript and -inputObject.

The -filterScript parameter is a positional parameter (as described in Chapter 6). The earlier exam-
ples in this chapter that use the where-object cmdlet use the value of filterScript parameter posi-
tionally. You can also express it explicitly.

142

Part I: Finding Your Way Around Windows PowerShell

11_946939 ch07.qxp 3/15/07 7:03 PM Page 142

Suppose that you want to find PowerShell processes that have a handle count greater than 500 and have
CPU usage of greater than 5 seconds. You can find those processes by using the where-object cmdlet,
as in the following command:

get-process powershell |
where-object {$_.Handles –gt 500 –and $_.CPU –gt 5}

or:

get-process powershell |
where-object -filterScript {$_.Handles –gt 500 –and $_.CPU –gt 5}

The most common source of objects for filtering by the where-object cmdlet is an earlier step in a
pipeline. However, the –inputObject parameter allows you to use the where-object cmdlet to filter
Windows PowerShell variables.

Suppose that you had assigned numeric values to three variables $a, $b, and $c:

$a = 10
$b = 20
$c = 30

You could use the –inputObject parameter to test whether the value of each variable was or was not
greater than 15. There are easier ways to test this in Windows PowerShell, but the following commands
provide an example of how you might use the –inputObject parameter. If you use the –inputObject
parameter in this way, you might test each variable in a collection.

where-object -inputObject $a -filterScript {$_ -gt 15}
where-object -inputObject $b -filterScript {$_ -gt 15}
where-object -inputObject $c -filterScript {$_ -gt 15}

Figure 7-6 shows the result of executing the preceding commands. Notice that nothing is displayed
when the first command is executed, indicating that the value of $a is not greater than 15 (which you
would expect, since 10 is less than 15).

Figure 7-6

At the time of writing, using multiple comma-separated values of the –inputObject parameter does
not produce the expected results, as you can also see in Figure 7-6:

where-object -inputObject $a,$b,$c -filterScript {$_ -gt 15}

143

Chapter 7: Filtering and Formatting Output

11_946939 ch07.qxp 3/15/07 7:03 PM Page 143

The where-object Operators
The operators you use in the script block that forms the value of the –filterScript parameter are
boolean operators. If the boolean operator returns $true for an object then the object is passed on for
further processing or display. If the boolean operator returns $false, then the object is discarded and is
unavailable for further processing or displaying. The following table shows the operators that you can
use with the where-object cmdlet.

Operator What it does

-eq Tests whether two values are equal.

-neq Tests whether two values are not equal.

-gt Tests whether a first value is greater than a second value.

-ge Tests whether a first value is greater than or equal to a second value.

-lt Tests whether a first value is less than a second value.

-le Tests whether a first value is less then or equal to a second value.

-like Tests whether two values are alike. One value is a string. The other value
includes one or more wildcards.

-notlike Same as -like buts tests for unlikeness.

-match Tests for a match between a string and a regular expression pattern.

-notmatch Same as -match but tests for the absence of a match between a string and a reg-
ular expression pattern.

When comparing strings, the -eq operator and other comparison operators make the comparison case-
insensitively by default. If you wish to make case-sensitive comparisons, add a “c” to the beginning of
the operator name, viz -ceq, -clt, and so on. If you wish to make explicit case-insensitive comparisons,
add an “i” to the beginning of the operator name, viz -ieq, -ilt, and so on.

Using the select-object Cmdlet
The select-object cmdlet lets you select specified properties of an object or set of objects. In addition,
you can use the select-object cmdlet to select unique objects from an array of objects or to select a
specified number of objects from the beginning or end of an array of objects. The select-object has
the following parameters in addition to the common parameters listed in Chapter 6:

❑ property — Specifies properties of interest

❑ excludeProperty — Specifies properties to be excluded

❑ expandProperty — Specifies a property to be selected and, if that property is an array, speci-
fies that each value in the array should be selected

144

Part I: Finding Your Way Around Windows PowerShell

11_946939 ch07.qxp 3/15/07 7:03 PM Page 144

❑ first — Specifies a number of values at the beginning of an array that are to be selected

❑ last — Specifies a number of values at the end of an array that are to be selected

❑ unique — Specifies that only unique values are to be selected

❑ inputObject — Specifies an input object, if the input objects are not supplied by the preceding
step of a pipeline

I demonstrate how you can use several of these parameters in the sections that follow.

Selecting Properties
You can use the select-object with the property parameter to select specified properties of an
object. One use is to select properties for display. The property parameter is a positional parameter, so
you can omit the parameter name if you prefer.

Suppose that you want to display the process name and handle count of running processes.

If you select processes using

get-process

objects representing running processes are returned, then passed to the default formatter. As you can see
in Figure 7-7, several columns of information are displayed by default. In this example, you want to see
only part of that information.

Figure 7-7

To take control of the objects passed to the default formatter so that, for example, only process name and
handle count are displayed, use the command

get-process |
select-object processname, handlecount

to select the process name and handle count of running processes. The result should be similar to Figure 7-8.

Figure 7-8

145

Chapter 7: Filtering and Formatting Output

11_946939 ch07.qxp 3/15/07 7:03 PM Page 145

The get-process cmdlet in the first step of the pipeline passes objects representing all running pro-
cesses. The second step of the pipeline is equivalent to

select-object -property processname, handlecount

so only objects representing the specified properties are passed to the default formatter. The result is that
only two columns of data are displayed, in the order specified in the list of values of the property
parameter.

You can adapt this technique to display desired properties by using a comma-separated list of the prop-
erties that you want to see. The properties are displayed onscreen in the order specified in the comma-
separated list.

There are other ways to achieve similar results in Windows PowerShell. For example, you can use the
format-table cmdlet (which I describe later in this chapter), as follows:

get-process |
format-table processname, handlecount

Expanding Properties
You can use the expandProperty parameter of select-object to display additional information
about an object or its properties.

In this example, the information associated with the processname property of a process is expanded
using the expand parameter.

If you use the following command to display information about processes whose name begins with wmi,
as you can see in Figure 7-9 only the name of the process is displayed.

get-process wmi* |
select-object processname |
format-list |
more

Figure 7-9

However, you can access much more information about these processes from the Windows PowerShell
command line. To see information about the modules associated with processes whose name begins with
wmi, type the following command. I chose those processes to keep the running time of the command to

146

Part I: Finding Your Way Around Windows PowerShell

11_946939 ch07.qxp 3/15/07 7:03 PM Page 146

acceptable limits. If you attempt to display this information for all processes the command may take some
time to complete. (If you don’t have WMI installed, substitute a process name where you have multiple
processes of the same name running on your machine.)

get-process wmi* |
select-object processname -expandProperty modules |
format-list |
more

Figure 7-10 shows the first screen of results. Notice the substantial amount of additional information that
is available including, in this example, information about the path to the file and the version of the file.

Figure 7-10

The first step of the pipeline, get-process wmi*, returns objects representing all processes whose
names begin with wmi. The get-process cmdlet has a positional parameter process name, so you don’t
need to provide the name of the parameter.

The second step uses the select-object cmdlet to expand information through the use of the
expandProperty parameter. The format-list cmdlet simply specifies that the information is to be
displayed onscreen as a list.

Selecting Unique Values
The –unique parameter allows you to use the select-object cmdlet to select only unique values.
Suppose that you have a list of values, and you want to find which values are present.

The data is as follows:

1,2,3,1,4,3,4,5,2,7,3,1,2

To find the unique values in this list of values, use the following command:

1,2,3,1,4,3,4,5,2,7,3,1,2 |
select-object –unique

147

Chapter 7: Filtering and Formatting Output

11_946939 ch07.qxp 3/15/07 7:03 PM Page 147

Figure 7-11 shows the result of executing the preceding command. With extensive data sets, using the
–unique parameter provides a quick and easy way to see which values are present in a data set.

Figure 7-11

You will often want to see sorted data. Simply add a pipeline step that includes the sort-object
cmdlet.

1,2,3,1,4,3,4,5,2,7,3,1,2 |
select-object –unique |
sort-object

You can use this approach, for example, to find which processes are running on a machine, irrespective
of whether multiple instances of a process are running. The following command displays a list sorted
alphabetically by process name:

get-process |
select-object -unique |
sort-object

You can also use the –unique parameter in combination with the –first and –last parameters, as I
show you in the next section.

First and Last
The –first parameter allows you select a specified number of values at the beginning of an array of
values. The –last parameter allows you to select a specified number of values at the end of an array of
values.

Suppose that you had the following data set and assigned it to the variable $a:

$a = 1,8,3,5,9,10,22,1,7,8,9,3,2,11,19,3,8,8,2,4,3,5

You can find the first five values by using the following command:

$a |
select-object –first 5

You pipe the array of values contained in $a to the select-object cmdlet. The first five values in the
array are selected.

148

Part I: Finding Your Way Around Windows PowerShell

11_946939 ch07.qxp 3/15/07 7:03 PM Page 148

As you can see in Figure 7-12, this displays the first five values in the array.

Figure 7-12

Using the –first parameter of the select-object parameter is easier than displaying the first five
values using the Windows PowerShell for statement, as follows:

for ($i = 0; $i -lt 5; $i++)
{write-host $a[$i]}

Arrays in Windows PowerShell are numbered from 0. by the way. I describe them in more detail in
Chapter 11.

Similarly, you can select the last five values in the array by using the following command:

$a |
select-object –last 5

The –first and –last parameters are particularly useful when you want to find, say, the smallest five
and largest five values in a data set. To use the select-object to do that, you need to sort the data first.

To find the five smallest values in $a, use this command:

$a |
sort-object |
select-object –first 5

Similarly, to find the five largest values in $a, use this command:

$a |
sort-object |
select-object –last 5

Figure 7-13 shows the results of executing the preceding commands.

149

Chapter 7: Filtering and Formatting Output

11_946939 ch07.qxp 3/15/07 7:03 PM Page 149

Figure 7-13

The preceding approach allows you to find, for example, processes with the smallest or largest handle
counts. The following command finds the five processes with the largest handle count.

get-process |
sort-object -descending handlecount |
select-object -first 5

The following command uses the –last parameter to find the five running processes with the smallest
handle count:

get-process |
sort-object -descending handlecount |
select-object -last 5

You can combine the –unique parameter with the –first and –last parameters. This finds the unique
values in the number of values specified by the –first or –last parameters. For example, to find the
unique values in the five smallest values in $a use this command:

$a |
sort-object |
select-object –first 5 -unique

Figure 7-14 shows the preceding command executed without and with the –unique parameter. Notice
that when it is executed without the –unique parameter the values returned are 1,1,2,2,3. There are dupli-
cates for the values 1 and 2. When the –unique parameter is specified, the duplicate values are removed.

Figure 7-14

150

Part I: Finding Your Way Around Windows PowerShell

11_946939 ch07.qxp 3/15/07 7:03 PM Page 150

Default Formatting
In pipelines that appear to have a single step, such as:

get-service

there is, in fact, an implicit final step in the pipeline, the default formatter. The visible step passes objects
(in this case representing services) to a default formatter.

The default formatter for each cmdlet displays information that Microsoft perceives might be generally
useful. Implicitly, the output is piped to the out-default cmdlet, which, in turn, pipes the output to the
default formatter. The default formatter then displays output.

The file C:\WINDOWS\system32\windowspowershell\v1.0\powershellcore.format.ps1xml con-
tains extensive information explaining how information about different types of objects is to be dis-
played (assuming that you installed Windows on drive C:). Figure 7-15 shows part of a copy of that file
displayed in Internet Explorer. The elements refer to Microsoft.PowerShell.Commands.GroupInfo
objects. Notice the presence of PropertyName elements, which are child elements of TableColumnItem
elements. Three values are contained in those elements – Count, Name, and Group.

Figure 7-15

151

Chapter 7: Filtering and Formatting Output

11_946939 ch07.qxp 3/15/07 7:03 PM Page 151

Execute the following command to demonstrate the default format from a pipeline using the group-
object cmdlet as its last explicit step:

get-command |
group-object verb

Notice in Figure 7-16 that the default formatting for output from the group-object cmdlet produces
Count, Name and Group columns, corresponding to the TableColumnItem elements in the powershell
core.format.ps1xml file.

Figure 7-16

You can see in the upper part of Figure 7-17 that the objects produced from the group-object cmdlet
are Microsoft.PowerShell.commands.GroupInfo objects. This confirms that the information dis-
played in Figure 7-15 applies to the objects output from group-object cmdlets.

Figure 7-17

However, as I showed you earlier in this chapter, you can use the select-object cmdlet as one way to
make your own choices about which information to pass to the default formatter. If you specify proper-
ties using the select-object cmdlet, then the default formatter will display the information in
columns corresponding to those objects you specified in the property parameter of select-object
and in the order you specified.

The powershellcore.format.ps1xml file also contains information about what should be displayed
when you display output as a list. Figure 7-18 shows information in powershellcore.format.ps1xml
relating to Microsoft.Management.Automation.CmdletInfo objects. Notice the PropertyItem ele-
ments, which are child elements of ListItem elements.

152

Part I: Finding Your Way Around Windows PowerShell

11_946939 ch07.qxp 3/15/07 7:03 PM Page 152

Figure 7-18

If you produce CmdletInfo objects for display, for example, by executing this command:

get-command get-childitem |
format-list

you can see in Figure 7-19 that the labels in each row of the output correspond to the PropertyItem ele-
ments shown in Figure 7-18.

In some situations, you can view information as a list by default. For example, execute this command:

(get-command get-childitem).Parametersets |
more

153

Chapter 7: Filtering and Formatting Output

11_946939 ch07.qxp 3/15/07 7:03 PM Page 153

Figure 7-19

Information about the parameters in the parameter set(s) of the cmdlet of interest is displayed as a list,
as you can see in Figure 7-20.

Figure 7-20

You can get detailed information about the behavior of the default formatter by exploring the content of
the XML elements in powershellcore.format.ps1xml. More informally, to explore the behavior of
the default formatter use this command:

get-command get-*

to find all the cmdlets which use a get verb. Then use each command piped to more to see the column
headings provided by default.

Another approach to taking more control of the output from a pipeline is to use the format-table and
format-list cmdlets that I describe in the following sections.

154

Part I: Finding Your Way Around Windows PowerShell

11_946939 ch07.qxp 3/15/07 7:03 PM Page 154

Using the format-table Cmdlet
The format-table cmdlet allows you to display information from a pipeline in a table. In some situa-
tions, the visual appearance produced by the format-table cmdlet is the same as that produced by the
default formatter. If you use the format-table cmdlet with no properties specified for display the dis-
play is the same as the default output. You can confirm this by comparing:

get-process sql*

and:

get-process sql* |
format-table

As you can see in Figure 7-21, the displayed columns are the same.

Figure 7-21

The usefulness of format-table is that it allows you to take control of the visual output to produce an
appearance that is more selective and/or better laid out than the display produced by the default for-
matter. You do this by using parameters to modify the behavior of the format-table cmdlet.

The format-table cmdlet has several parameters, shown in the following list. Only the property
parameter is a positional parameter.

❑ property — Specifies a property or list of properties to be displayed. You cannot use the
property parameter if you use the view parameter in the same command.

❑ AutoSize — Specifies that the width of a column is to be adjusted automatically according to
the width of the data.

❑ HideTableHeaders — If present specifies that the column headers are to be omitted.

❑ GroupBy — Specifies that output is to be grouped based on some shared property or value.

❑ Wrap — If present specifies that output is to wrap onto the next line. This contrasts with the
default behavior, which is to truncate the content of a column if it exceeds the column width.

155

Chapter 7: Filtering and Formatting Output

11_946939 ch07.qxp 3/15/07 7:03 PM Page 155

❑ View — Specifies the name of an alternate column view.

❑ Force — Overrides restrictions that will prevent the command succeeding.

❑ InputObject — Specifies an input object to be formatted. This is used when output is not
being passed to the format-table cmdlet from an earlier pipeline step.

❑ Expand — Allows both information about a collection and its contained objects to be displayed.

❑ DisplayErrors — Specifies that errors are to be displayed on the command line.

❑ showErrors — Specifies that errors are to be passed along the pipeline.

In the following sections, I demonstrate how you can use several of these parameters.

Using the property Parameter
The property parameter is a positional parameter in position 1. The value of the property parameter is
the name or, more usually, a comma-separated list of names, of properties of objects supplied from the
pipeline.

This example uses the property parameter to selectively display information about the name, process ID,
and handle count of processes whose name begins with svc. Type this code:

get-process -name svc* |
format-table –property processname, ID, handlecount

or:

get-process svc* |
format-table processname, ID, handlecount

Figure 7-22 shows the results. Notice that text content is aligned left in a column and numeric content is
aligned right.

Figure 7-22

156

Part I: Finding Your Way Around Windows PowerShell

11_946939 ch07.qxp 3/15/07 7:03 PM Page 156

The first step of the pipeline retrieves all processes whose process name begins with the character
sequence svc. The wildcard * matches zero or more characters that may follow.

The second step of the pipeline uses the property parameter positionally and is equivalent to:

format-table -property processname, ID, handlecount

By default, the format-table cmdlet spreads the columns corresponding to the supplied property names
across the full width of the command window. When there are multiple rows, this can make reading the
output difficult. One way to improve readability is to use the autosize parameter with format-table.

Using the autosize Parameter
The autosize parameter automatically adjusts the width of a displayed column to the greater of the
width of the column label or the column content. Generally, this makes it easier to read along rows.

This example uses the autosize (or -auto, or even just -a) parameter to display the previously selected
properties in a more compact display. The width of a column is adjusted to correspond to the width of
the data it contains. Type:

get-process svc*|
format-table -property processname, ID, handlecount -autosize

Figure 7-23 shows the output. Notice that when you use the –autosize parameter, the three columns of
data are displayed closer together, thus improving readability along a line of data.

Figure 7-23

The only change from the preceding example is the presence of the autosize parameter. Its value is a
boolean. You don’t need to supply a value, but the Windows PowerShell parser allows you to supply a
value using the colon notation, -autosize:$true, if you prefer. Simply providing the name of the
-autosize parameter indicates that the value of the parameter is $true.

157

Chapter 7: Filtering and Formatting Output

11_946939 ch07.qxp 3/15/07 7:03 PM Page 157

Hiding Table Headers
Format-table’s -hidetableheaders parameter allows you to hide the headers for each column that
Windows PowerShell displays. To hide the column headers for the preceding example, simply add the
hidetableheaders parameter:

get-process svc*|
format-table -property processname, ID, handlecount -autosize
-hidetableheaders

Figure 7-24 shows the result together with the result from the preceding example.

Figure 7-24

Grouping Output
The groupby parameter allows you to group output from the format-table cmdlet. Visually, the out-
put looks like a series of small tables, some of which may have only a single line.

This example shows how to group output from the get-process cmdlet by using the groupby parame-
ter of the format-table cmdlet. It retrieves information on all processes that begin with sq and groups
the display by process name. Amend the command if you don’t have SQL Server installed.

get-process sq*|
format-table -groupby processname

For some processes, for example, sqlservr, there are multiple processes retrieved, as shown in Figure 7-25.

The first step of the pipeline is familiar if you have read the examples earlier in this chapter. Because
you supply the groupby parameter in the second step of the pipeline, the format-table cmdlet

groups the information by process name before displaying it. Since no property parameter was used
with format-table, the displayed columns are the default ones that format-table uses with the
get-process cmdlet.

158

Part I: Finding Your Way Around Windows PowerShell

11_946939 ch07.qxp 3/15/07 7:03 PM Page 158

Figure 7-25

When you use the –groupby parameter with the format-table cmdlet, the output differs from that
you see when you use the group-object cmdlet in a separate pipeline step:

get-process sq* |
group-object Name |
format-table

Figure 7-26

Figure 7-26 shows the result of executing the preceding command. By comparing it to Figure 7-25, you
can see that the output displayed is significantly different. When you use the command shown in Figure
7-25, System.Diagnostics.Process objects are presented to the format-table cmdlet. In the most
recent command, Microsoft.PowerShell.Commands.GroupInfo objects are presented to the
format-table cmdlet.

Specifying Labels and Column Widths
The format-table cmdlet allows you to provide custom names for each column (if, for example, you
find the corresponding property name isn’t ideal for your users) and to specify the width of each col-
umn. Used well, this allows you to create a significantly improved visual display.

159

Chapter 7: Filtering and Formatting Output

11_946939 ch07.qxp 3/15/07 7:03 PM Page 159

To do this, you specify an associative array, which contains a comma-separated list of values, to the
property parameter. Each value specifies an expression that defines the content of a column, a column
width, and a label to be used as the column header and takes this form:

@{expression = “anExpression”; width = aNumber; label = “aString”}

This approach is most useful when you run a script repeatedly and want to display the output in an eas-
ily read format.

This example shows you how to display the process name, ID, and handle count of processes whose
name begins with svc, while specifying custom labels for the columns and specifying the width of each
column. The label for the first and third columns simply splits the property name into two words.

Type the following command:

get-process svc* |
format-table @{expression=”processname”; width=15; label=”Process Name”},
@{expression=”ID”; width=10; label = “ID”},
@{expression = “handlecount”; width=15; label = “Handle Count”}

Figure 7-27 shows the results. Depending on the data, this can give you a much more readable output
than, for example, using the autosize parameter. The column header is customized.

Figure 7-27

The first step of the pipeline retrieves processes whose processname begins with the character sequence
svc.

The second step provides three values in a hash table whose values are a comma-separated list for the
property parameter of the format-table cmdlet. The first value:

@{expression=”processname”; width=15; label=”Process Name”}

160

Part I: Finding Your Way Around Windows PowerShell

11_946939 ch07.qxp 3/15/07 7:03 PM Page 160

has three parts. The expression part specifies which property (or expression) is to supply data for the
column. The width part specifies the width for that column. The label part specifies the column name
to be displayed.

Be careful not to enclose the value of width in paired quotes or an error message telling you that the type
of the value is wrong will be displayed. The value of the column part must be an integer, not a string.

Using the format-list Cmdlet
The format-table cmdlet is useful when the values to be displayed are short or values to be displayed
are few. But when there are many values to be displayed or if individual values are long then using the
format-table cmdlet can produce unsatisfactory output. For example, if you wanted to see all the
properties returned by the get-childitem cmdlet in a table you would use a command like this:

get-childitem |
format-table *

Figure 7-28 show the type of results you will see. As you can see, the values in many columns are trun-
cated to the point of being useless as a source of information to the user.

Figure 7-28

In this situation, Windows PowerShell, by default, displays too many columns onscreen. The format-
list cmdlet allows you to better display all the information onscreen.

This example uses the format-list cmdlet to ensure that the complete value of each property is dis-
played for each process.

Type this command:

get-childitem |
format-list *

161

Chapter 7: Filtering and Formatting Output

11_946939 ch07.qxp 3/15/07 7:03 PM Page 161

The first part of the output is shown in Figure 7-29. You can now see the value for each property without
any truncation. The downside is that the information is spread across many screens of information — but
at least you can view the information you want.

Figure 7-29

Using the update-formatdata and update-
typedata Cmdlets

PowerShell version 1.0 format files have the file extension .ps1xml. I described earlier in this chapter a little
of the structure of a format file and mentioned that the formatting information used by the default formatter
is contained in the powershellcore.format.ps1xml file. The file contains many XML elements but also
contains a digital signature. You may want to have other format files available for use. The update-
formatdata cmdlet is intended to allow you to load other ps1xml files into the Windows PowerShell shell.

The update-formatdata cmdlet supports the following parameters, in addition to the common
parameters:

❑ appendPath — Specifies a path to optional format files that are processed after the built-in for-
mat files are loaded

❑ prependPath — Specifies a path to optional format files that are processed before the built-in
format files are loaded

The update-typedata cmdlet is similar in concept to the update-formatdata cmdlet. Formatting
data for types is held in the types.ps1xml file. The update-typedata cmdlet allows you to load addi-
tional files containing format data for the display of types.

The update-typedata cmdlet supports the following parameters, in addition to the common parameters:

❑ appendPath — Specifies a path to optional type.ps1xml files that are processed after the
built-in files are loaded

❑ prependPath — Specifies a path to optional type.ps1xml files that are processed before the
built-in files are loaded

162

Part I: Finding Your Way Around Windows PowerShell

11_946939 ch07.qxp 3/15/07 7:03 PM Page 162

Summary
The where-object cmdlet allows you to filter objects passing along a pipeline to reduce or eliminate
unwanted results. The value of the –filterScript parameter is used to determine whether an object is
passed along the pipeline or is discarded.

The select-object cmdlet allows you to select specified objects or properties for further processing in
a pipeline. The –first and –last parameters allow you selectively to process a specified number of
elements at the beginning or end of an array. When used with sorted data these parameters allow you to
select a specified number of the highest or lowest values in a data set.

The formatting of objects for display in Windows PowerShell is carried out using the default formatter.
The format-table cmdlet allows you to more selectively display data or to customize the appearance
of selected data. The format-list cmdlet allows you to display data in a list format.

163

Chapter 7: Filtering and Formatting Output

11_946939 ch07.qxp 3/15/07 7:03 PM Page 163

11_946939 ch07.qxp 3/15/07 7:03 PM Page 164

Using Trusting Operations

Tools such as Windows PowerShell provide tremendous power. But at the same time, one poten-
tially terrifying thing about Windows PowerShell is that its power makes it potentially more
destructive if you do something wrong. Imagine that you want to delete some files or stop some
processes or services depending on the value returned by an expression. You really need to be sure
of what you are doing, don’t you? You don’t want to end up deleting some crucial files on which
your company depends just because you made a mistake in the syntax on the command line or in
a Windows PowerShell script.

The Windows PowerShell designers have that base covered by providing several options to use
with cmdlets that let you check the effects of what you plan to do. I describe these options in this
chapter.

There are three parameters available for use with many, but not all, Windows PowerShell cmdlets
that allow you to anticipate exactly what a command will do or monitor what a command has
done. The cmdlets that lack these parameters cannot change system state. The parameters are:

❑ whatif — Allows you to see what a command would have done without actually exe-
cuting the command

❑ confirm — Allows you to see the individual actions a command would have taken and
allows you to confirm or cancel each action

❑ verbose — Allows you to see in detail what you have done

12_946939 ch08.qxp 3/15/07 7:04 PM Page 165

Look Before You Leap
The whatif, confirm, and verbose parameters are available on many, but not all, Windows PowerShell
cmdlets. Strictly speaking only the whatif and confirm parameters give you the information you would
like before you leap. The verbose parameter tells you that you have leapt and exactly what you hit on the
way down! Sometimes that after-the-event information you get from the -verbose parameter will be all
you need. If that isn’t enough, then you probably need to use the whatif or confirm parameters.

The cmdlets that are potentially most dangerous are those that use the remove verb. There are five such
cmdlets:

❑ remove-drive

❑ remove-item

❑ remove-pssnapin

❑ remove-property

❑ remove-variable

In later sections in this chapter, I demonstrate how you can use the –whatif and –confirm parameters
with some of the preceding cmdlets.

Using the remove-item Cmdlet
The remove-item cmdlet deletes an item from a provider. Two important uses are the deletion of items
(folders and files) in the file system and the deletion of items in the registry. At the risk of stating the
obvious, deletions in the file system or registry can produce undesired effects.

In addition to the common parameters (covered in Chapter 6), the remove-item cmdlet supports the
use of the following parameters:

❑ path — Specifies the path of the item(s) to be removed. A positional parameter in position 1.

❑ recurse — If present, specifies recursive interpretation of the command. Descendant items,
not only child items, of the current location are removed.

❑ force — If present, overrides restrictions such as file renaming.

Some of the examples in this chapter are potentially damaging to your system.
Please be VERY CAREFUL when you type the code examples to ensure that you do
not unintentionally run potentially damaging code. And when you extend or adapt
the examples, make liberal use of the -whatif parameter to check that your adapta-
tions don’t have unintended effects.

In addition, while you are learning the effects of Windows PowerShell commands,
you may want to focus your experimentation on a test machine.

166

Part I: Finding Your Way Around Windows PowerShell

12_946939 ch08.qxp 3/15/07 7:04 PM Page 166

❑ include — If present, specifies items to include. The value of this parameter qualifies the
value of the –path parameter.

❑ exclude — If present, specifies items to exclude. The value of this parameter qualifies the
value of the –path parameter.

❑ filter — Specifies a filter that qualifies the value of the –path parameter.

❑ credential — If present, specifies a credential to use to gain access to the item(s).

Since the remove-item cmdlet can be destructive, you should first create a folder and file structure that
you can safely use remove-item on. If you prefer, you can create a similar structure by using Windows
Explorer and Notepad. Since Windows PowerShell does all you need, it makes sense to me to use
Windows PowerShell cmdlets to get the task done.

In this example, I will show you how to use Windows PowerShell to create a folder and file structure
that you can then use the remove-item cmdlet on in later examples in this chapter.

In the examples that follow, I am using the C: drive to hold the test files. Feel free to change the drive or
folder names to suite your setup.

Start Windows PowerShell, and type the following to create a new directory named Disposable:

new-item -path c:\Disposable -type directory

The value of the –path parameter specifies the location of the new item. The value of the –type parame-
ter specifies that you are creating a folder (aka a directory). Figure 8-1 shows the result. Notice that a
new folder named Disposable has been created.

Figure 8-1

In the examples that follow, you perform some destructive actions (deleting files,
etc.). Therefore, I strongly suggest that you either work on test directory structures
until you are sure what you are doing or use the whatif parameter (described later
in this chapter).

167

Chapter 8: Using Trusting Operations

12_946939 ch08.qxp 3/15/07 7:04 PM Page 167

Next add some text files that will be used to test the use of the include and exclude parameters with
remove-item in later examples.

To create four simple test text files in the Disposable directory, type these commands. The commands
assume that C:\Disposable is the current working directory.

“This is test 1” > c:\disposable\Test1.txt
“This is test 2” > c:\disposable\Test2.txt
“This is test 3” > c:\disposable\Test3.txt
“This is test 4” > c:\disposable\Test4.txt

Confirm that you have created the desired files by using this command:

get-childitem c:\Disposable*.txt

The result showing the successful creation of four sample files should look like Figure 8-2.

Figure 8-2

To help demonstrate the use of the -recurse parameter later in the chapter, you should also create an
additional folder named subfolder inside the Disposable folder, using the following command:

new-item -path c:\Disposable\subfolder -type directory

Figure 8-3 shows that the subfolder folder has been successfully created.

Figure 8-3

168

Part I: Finding Your Way Around Windows PowerShell

12_946939 ch08.qxp 3/15/07 7:04 PM Page 168

Switch to the subfolder directory, and then add some simple text files, using the following commands:

“This is test 1” > c:\disposable\subfolder\Test1.txt
“This is test 2” > c:\disposable\subfolder\Test2.txt
“This is test 3” > c:\disposable\subfolder\Test3.txt
“This is test 1 backup.” > c:\disposable\subfolder\Test1.bak
“This is test 2 backup.” > c:\disposable\subfolder\Test2.bak
“This is test 3 backup.” > c:\disposable\subfolder\Test3.bak

To confirm that you have created the desired six files in the c:\Disposable\subfolder folder, use this
command:

get-childitem c:\Disposable\subfolder

Figure 8-4 shows the desired result.

Figure 8-4

Finally, copy the Disposable folder and its files and nested folder, so you can recreate the structure by
copying back the copy. Use the following command:

copy-item -path c:\Disposable -destination c:\DisposableCopy –recurse

Now that you have saved a copy of the directory structure, you can use the remove-item cmdlet to
remove items. First, let’s look at what the preceding commands have done. The command

new-item -path c:\Disposable -type directory

uses the new-item cmdlet to create a new folder. The value of the -type parameter specifies that it is a
folder that is to be created. The value of the -path parameter specifies what folder is to be created.

169

Chapter 8: Using Trusting Operations

12_946939 ch08.qxp 3/15/07 7:04 PM Page 169

The command

“This is test 1” > c:\disposable\Test1.txt

takes a literal string and redirects the output from the console (the default) to a file named
c:\DisposableTest1.txt. The > character is the redirection operator in Windows PowerShell. The
similar commands create the other three test files in the Disposable directory.

The command

new-item -path c:\Disposable\subfolder -type directory

is similar to the command that created the Disposable directory. The value of the -type parameter
specifies that a folder is to be created. The value of the -path parameter specifies the location of the new
folder.

The test files in the subfolder folder are created in the same way as the test files in the Disposable
directory.

The command

copy-item -path c:\Disposable -destination c:\DisposableCopy -recurse

uses the copy-item cmdlet to create a complete copy of the Disposable folder and all its content in a
folder named c:\DisposableCopy. The value of the -path parameter specifies what is to be copied.
The value of the -destination parameter specifies where the copy is to be located. The presence of the
-recurse parameter specifies that the copying is to be done recursively.

If you omit the -recurse parameter and simply type

copy-item -path c:\Disposable -destination c:\DisposableCopy

then a folder named DisposableCopy is created, but it is empty.

Now that the test folder and file structure has been created, you can try using the remove-item cmdlet.
In this example, you delete the file named test3.bak in the subfolder directory.

To delete a single file, you use the remove-item cmdlet and specify the file to be deleted as the value of
the -path parameter. Since the -path parameter is a positional parameter, you can omit the name of the
parameter if you want to. The command is shown here with the whatif parameter for safety:

remove-item c:\Disposable\subfolder\test3.bak -whatif

170

Part I: Finding Your Way Around Windows PowerShell

Redirection Operators
In Windows PowerShell, you can redirect content to a file using redirection operators.
To redirect so that a new file is created or an existing file is overwritten, use the > oper-
ator. To redirect so that content is appended to an existing file (if it exists) or a new file
is created (if the file doesn’t already exist), use the >> operator.

12_946939 ch08.qxp 3/15/07 7:04 PM Page 170

Run the command with the –whatif parameter. Notice the message displayed in Figure 8-5. Then run
the command again without the parameter:

remove-item c:\Disposable\subfolder\test3.bak

to actually delete the file Test3.bak.

To confirm that test3.bak has been deleted, use this command:

get-childitem c:\Disposable\subfolder*.bak

Figure 8-5 shows the result before and after the deletion of a single file.

Figure 8-5

The command

remove-item c:\Disposable\subfolder\test3.bak -whatif

does not actually delete anything — rather, it tells you what files would have been deleted if the -whatif
parameter had not been specified. In this case, only a single file, Test3.bak, would have been deleted.
Removing the -whatif parameter like this:

remove-item c:\Disposable\subfolder\test3.bak

deletes the file. Notice in Figure 8-5 the difference between the files listed before and after the preceding
command is run.

You can also use wildcards to get Windows PowerShell to delete multiple files at one time. The single *
wildcard, for example, matches zero or more characters (that is all files — so use this wildcard with care).
The ? wildcard matches a single character.

In the next example, you use a wildcard to delete two files in the subfolder directory: test2.txt and
test2.bak.

171

Chapter 8: Using Trusting Operations

12_946939 ch08.qxp 3/15/07 7:04 PM Page 171

First, confirm that the relevant two files exist, using the following command:

get-childitem c:\Disposable\subfolder\test2.*

Type the following command:

remove-item -path c:\Disposable\subfolder\test2.* -whatif

to test what the command does. Notice in Figure 8-6 that a message is displayed for each of the two files
that the command would delete if the –whatif parameter were not present. Next, type

remove-item -path c:\Disposable\subfolder\test2.*

to delete the desired two files.

Then type

get-childitem c:\Disposable\subfolder\test2.*

to confirm that the files have been deleted. Now no files match the pattern test2.*. In other words, the
two files have been successfully deleted. As you can see in Figure 8-6, the previously listed files have
been deleted.

Figure 8-6

Delete the Disposable folder by using Windows Explorer or the following Windows PowerShell
command:

remove-item C:\Disposable

Copy the DisposableCopy folder to the Disposable folder, using this command:

copy-item C:\DisposableCopy C:\Disposable –recurse

to recreate the Disposable folder and its contents. Move to the C:\Disposable\subfolder folder.

The key command in this example is:

remove-item -path c:\Disposable\subfolder\test2.*

172

Part I: Finding Your Way Around Windows PowerShell

12_946939 ch08.qxp 3/15/07 7:04 PM Page 172

The value of the path parameter includes the * wildcard. The * wildcard matches any characters, so it
matches the files ending bak and txt. Therefore both Test2.bak and Test2.txt are deleted by the
remove-item cmdlet.

The –include parameter allows you to tighten up a choice specified in the –path parameter of the
remove-item cmdlet.

Execute the following command:

remove-item –path * -whatif

Notice in Figure 8-7 that all six files in the folder would be deleted. Add an –include parameter, as in
the following command:

remove-item –path * -include *.txt –whatif

and execute it. Notice in Figure 8-7 that only the files that match the *.txt in the value of the –include
parameter would be deleted.

Figure 8-7

When you come to use the –recurse parameter, you need to be aware of semantics that not all early
users of Windows PowerShell find intuitive. Requests were made during the beta program that the
semantics be changed. However, in the final release of Windows PowerShell version 1.0 the semantics
seem to me to be unexpected in some situations.

To demonstrate an example of the issue that you need to be aware of, change to the C:\Disposable
directory. Execute this command:

get-childitem –path * -include *.txt

Notice in Figure 8-8 that .txt files in the Disposable folder are selected.

173

Chapter 8: Using Trusting Operations

12_946939 ch08.qxp 3/15/07 7:04 PM Page 173

Similar behavior is seen if you execute the following command:

remove-item path * -include *.txt –whatif

With these values for their respective –path and –include parameters, the get-childitem and
remove-item cmdlets appear to behave consistently with each other.

However, if you add the –recurse parameter to both the preceding commands:

get-childitem –path * -include *.txt –recurse

and:

remove-item -path * -include *.txt –whatif –recurse

the behavior diverges significantly, as you can see in Figure 8-9. The –recurse of the get-childitem
cmdlet behaves as I would expect it to. The –recurse parameter of the remove-item cmdlet doesn’t
behave as I would expect.

Figure 8-8

Figure 8-9

174

Part I: Finding Your Way Around Windows PowerShell

12_946939 ch08.qxp 3/15/07 7:04 PM Page 174

Using the whatif Parameter
I think that the whatif parameter is an incredibly valuable part of the Windows PowerShell approach. It
allows you to test the effect of a command before anything is changed on a machine. This is very useful
if, as shown in earlier examples, you use the remove-item cmdlet with a wildcard.

Another situation where the whatif parameter is useful is with the stop-process and stop-service
cmdlets.

Using the stop-process Cmdlet
You can use the stop-process cmdlet to stop one or more running processes on a machine. But for
obvious reasons, this can be dangerous, and Windows PowerShell builds in a couple of safety mecha-
nisms. First, is the –whatif parameter I describe below. But the -whatif parameter isn’t the only safety
mechanism built into the stop-process cmdlet. Imagine that you type a command like the following:

stop-process

If you were familiar with the behavior of the get-process Cmdlet, you might expect the command to
accept a default to stop all running processes — since this would not be a very safe approach, fortunately
this is not what happens. In this case, stop-process prompts you for a process ID for a process to stop,
as shown in Figure 8-10.

Figure 8-10

The stop-process cmdlet has -ID, -processname, -input, and -passthru parameters. The -ID
parameter is the only positional parameter and is recognized in position 1. So, when you type

stop-process

the Windows PowerShell interpreter needs a positional parameter to be supplied, in this case the process
ID property of one or more running processes.

The following examples use the -whatif parameter. Omitting it may cause your
machine to crash, depending how you adapt the examples.

If you intend to use the remove-item cmdlet in the registry be very sure that you
know what you are doing.

175

Chapter 8: Using Trusting Operations

12_946939 ch08.qxp 3/15/07 7:04 PM Page 175

In this example, I start a Notepad process from the command line, find its ID, and then stop it using the
value of its ID property.

To start Notepad from the Windows PowerShell command line, type this command at the Windows
PowerShell console:

notepad

A Notepad window opens.

To find the ID value of all running instances of Notepad, type:

get-process -processname notepad

This command displays some limited information to the console about all the running instances of
Notepad on your system.

To stop a particular Notepad instance, take note of the value of its ID property. On my machine when I
wrote this, the value of Notepad’s process ID was 2692, so I would type:

stop-process -ID 2692

To confirm that the Notepad process has exited, type:

get-process Notepad

Figure 8-11 shows the results you see onscreen after each command is typed. I have several Notepad
processes running, but ID 2692 is no longer among them, since it has been stopped.

Typing

notepad

simply launches a new instance of the Notepad application. You don’t need to use the new-object
cmdlet to start Notepad. However, the new-object cmdlet can be used to launch other COM applica-
tions. See Chapter 13 for further information.

Figure 8-11

176

Part I: Finding Your Way Around Windows PowerShell

12_946939 ch08.qxp 3/15/07 7:04 PM Page 176

The command

get-process -processname notepad

is used to retrieve information about all the running Notepad processes. The value of the -processname
parameter specifies that only objects whose processname property is equal to Notepad are returned.
The result displays the value of the Id property for any running Notepad process.

Supplying a valid value of a running Notepad process as follows (on my machine):

Stop-Process -ID 5268

results in the specified process being stopped.

If you want to stop multiple processes, one way to do it is to simply provide a comma-separated list of
Id values, assuming that you know the relevant ID values. Alternatively, you can use wildcards to limit
the selection of processes to stop and use the whatif parameter to refine the command until it does just
what you want it to.

This example shows you how you can use Windows PowerShell to stop multiple processes using the
whatif parameter. The example intends to stop all processes relating to Microsoft SQL Server. If you
don’t have convenient access to SQL Server, you could start a number of Notepad instances and adapt
the command to fit that situation.

Without using the -whatif parameter, you could use this command to find all SQL Server processes:

get-process *sql*

Then you could inspect the results, which might look like Figure 8-12, to see if the desired processes are
selected.

Figure 8-12

If, after inspecting the results of the get-process cmdlet, you think you have a wildcard that does exactly
what you want, you can simply use the same wildcard combination with the stop-process cmdlet:

stop-process -processname *sql*

The –name parameter of the get-process cmdlet is positional, so you don’t need to supply the name
of the parameter. In the stop-process cmdlet, the –name parameter is a named parameter (the –ID
parameter is its only positional parameter), so when specifying process names you need to provide the
parameter’s name, too.

177

Chapter 8: Using Trusting Operations

12_946939 ch08.qxp 3/15/07 7:04 PM Page 177

The -whatif parameter provides an alternative and, in my opinion, a better approach. Type

stop-process –name *sql* -whatif

and you can see, as shown in Figure 8-13, the processes that will be stopped.

Figure 8-13

Using the -whatif parameter only displays the processes that the stop-process cmdlet would stop;
no processes are stopped when the -whatif parameter is present.

To stop the chosen processes, simply repeat the command, deleting the -whatif parameter. When you
run the command without the -whatif parameter, the processes are stopped.

Using the stop-service Cmdlet
The stop-service cmdlet is similar to stop-process; however, it only stops running services as
opposed to all services. You can use the -whatif parameter with the stop-service cmdlet to make
sure that you don’t stop any services that you intended to allow to continue.

In addition to the ubiquitous parameters, the following parameters are available for use with the stop-
service cmdlet:

❑ name — Specifies the name of the service. Cannot be used with the displayname parameter in
the same command.

❑ include — Specifies which items the cmdlet will act on.

❑ exclude — Specifies which items the cmdlet will not act on.

❑ force — Allows the cmdlet to override dependency restrictions.

❑ passthru — Takes the object created as a result of the cmdlet and passes it down the pipeline

❑ displayname — Specifies the display name of the service. Cannot be used with the name
parameter in the same command.

If you are unclear about the differences between the name of a service, as specified by the –name param-
eter, and the display name, as specified by the –displayname parameter, execute the following com-
mand to see the difference.

get-service * |
format-list Name, DisplayName

178

Part I: Finding Your Way Around Windows PowerShell

12_946939 ch08.qxp 3/15/07 7:04 PM Page 178

This example allows you to stop any services relating to SQL Server. If you don’t have SQL Server
installed, adapt the name of the services to be displayed. It also illustrates one important limitation of
the -whatif parameter. While the -whatif parameter tells you what operation it would attempt, there
is no indication of whether the operation would be successful. You might not, for example have the
rights to stop a service. Thus, –whatif may tell you that it would stop a service, but in fact when you
try, the command fails.

First, find all SQL Server services on the machine and sort them according to their status (running or
stopped), using this command:

get-service *sql* |
sort-object status

Figure 8-14 shows the results on a machine with SQL Server 2005 components installed. Notice that 7 of
8 services are running.

Figure 8-14

You can use the -whatif parameter with the stop-service cmdlet in this command:

stop-service -servicename *sql* -Whatif

In Figure 8-15, you can see that it indicates that it will stop eight processes, although one of those ser-
vices is already stopped.

Figure 8-15

179

Chapter 8: Using Trusting Operations

12_946939 ch08.qxp 3/15/07 7:04 PM Page 179

The wildcards in the value of the servicename parameter of the stop-service cmdlet will match any
SQL Server service. The -whatif parameter does not check if the service is actually running before indi-
cating that the stop-service cmdlet will stop it. Practically, this may not be too much of a problem,
since you quite possibly want all services stopped anyway. The one practical issue that can arise is that
the additional services displayed (which are already stopped) can make it more difficult to read the
effect of the stop-service cmdlet.

Using the confirm Parameter
The -confirm parameter allows you to step through the processing of a cmdlet and decide at each point
whether to allow it to implement the intended action or to prevent it taking that action.

When you use the confirm parameter, you are offered the options of Yes (Y), Yes to All (A), No (N),
No to all (L), Suspend (S), and Help (?).

This example repeats the preceding example but uses the Confirm parameter in place of the whatif
parameter to demonstrate the difference in behavior. Notice that with the –confirm parameter you
never get an overview of what you are going to do. You need to evaluate each action individually.
However, when using the –whatif parameter, if you find that you can see the actions you want, then
changing to the –confirm parameter allows you to step through the available actions, confirming those
that you want to take place and rejecting those that you don’t want.

Type the following command:

stop-service -servicename *sql* -confirm

Figure 8-16 shows the result after responding No to the first option offered and before making a decision
about the second option.

Figure 8-16

The first part of the statement:

stop-service -servicename *sql*

would stop several SQL Server services if the –confirm parameter weren’t present. For each service,
you are asked to specify whether you want to stop that service, not stop that service, stop all services, or
decline stopping any service. Be careful with the Yes to All option: you must be certain which services
will be affected before using it.

180

Part I: Finding Your Way Around Windows PowerShell

12_946939 ch08.qxp 3/15/07 7:04 PM Page 180

The Suspend option offered when you use the –confirm parameter allows you to get a subshell.
Activity in the current shell is suspended. You can issue other commands in the subshell that might help
you decide what you want to do, then type Exit (to exit the subshell) to return to the original command
and decide what you want to do.

Using the verbose Parameter
The -verbose parameter tells you what has been done. If you are doing something risky, then the
verbose parameter doesn’t provide protection against ill-advised actions like the -whatif or =confirm
parameters, at least if you haven’t worked out the precise effect of the command.

In this example, you will start three copies of the Notepad application and then use Windows
PowerShell to stop those three instances but observe the output generated by Windows PowerShell
when you use the verbose parameter. The example assumes that you don’t have other instances of
Notepad running.

Start three Notepad instances by typing these commands:

Notepad
Notepad
Notepad

Confirm that three Notepad processes are running:

get-process Notepad

Now stop the processes by typing:

stop-process -processname Notepad

You can see in Figure 8-17 that no information is given about what actions have been taken although all
instances of Notepad are terminated. This will also close any other instances of Notepad you might have
and will do so despite your perhaps having unsaved changes.

Figure 8-17

To observe the output Windows PowerShell generates with the –verbose parameter, start three new
Notepad processes, as described above.

181

Chapter 8: Using Trusting Operations

12_946939 ch08.qxp 3/15/07 7:04 PM Page 181

Then stop them using the stop-process command, but this time specifying the verbose parameter as
follows:

stop-process -name Notepad -verbose

As you can see in Figure 8-18, all three instances of Notepad are terminated and information is given
about each of the three Notepad processes the stop-process cmdlet has stopped.

Figure 8-18

By specifying the verbose parameter, you get Windows PowerShell to display text information about
each object affected by a command. This information is, by default, echoed to the console.

Summary
In this chapter, I described three parameters that are available on cmdlets that alter system state. The
parameters provide either some protection against unintended changes in system state or feedback on
changes made in system state.

The –whatif parameter allows you to test the effect of a command or pipeline without actually making
any change in system state.

The –confirm parameter allows you to make a decision about each potential change in system state.
You have options to proceed with or not to proceed with individual actions that affect system state.

The –verbose parameter provides additional information about the effects of a command, if the cmdlet
supports the parameter.

In demonstrating the use of the preceding parameters, I introduced you to the following cmdlets, which
can change system state:

❑ remove-item

❑ stop-service

❑ stop-process

and demonstrated how you could use them with the –whatif, -confirm and –verbose parameters.

182

Part I: Finding Your Way Around Windows PowerShell

12_946939 ch08.qxp 3/15/07 7:04 PM Page 182

Retrieving and Working
with Data

Windows PowerShell allows you readily to access, retrieve, and manipulate data from a range of
drives, files, and other data containers. Access to data stores in Windows PowerShell is founded
on providers. A provider is a .NET program that makes available data from a data store and sup-
ports viewing and manipulation of that data.

In this chapter, I introduce you to several cmdlets that are relevant to exploring data stores and
retrieving and manipulating data from them.

One of the differences between the Windows and the Linux families of operating systems is that
Windows and Windows applications store system information in a huge variety of formats. In
Linux, a lot of information is stored as text and, if you have the appropriate text utilities and the
skills to use them, you can access a lot of system information by simply manipulating text. In
Windows, you have system information stored in stores such as the registry and Active Directory.
Text utilities just won’t cut it. Windows PowerShell provides, and needs, a range of providers that
allow you to access and manipulate objects that represent a variety of data stores.

Windows PowerShell Providers
Access to data stores in Windows PowerShell depends on providers. As mentioned earlier, a provider
is a .NET program that allows you to access data in a data store, then display or manipulate it.

To find the providers available on a machine, use the get-psprovider cmdlet. To find all avail-
able providers, simply type:

get-psprovider

13_946939 ch09.qxp 3/15/07 7:04 PM Page 183

To display an alphabetical list of PowerShell providers, type:

get-psprovider | sort-object name

Figure 9-1 shows the names, capabilities and drives of the built-in PowerShell providers.

Figure 9-1

The following table summarizes the data stores supported by the built-in providers.

Provider Data Store

Alias Windows PowerShell aliases

Certificate X509 certificates for digital signatures

Environment Windows environment variables

FileSystem File system drives, folders (directories) and files

Function Windows PowerShell functions

Registry Windows registry

Variable Windows PowerShell variables

Broadly, each provider supports display of its data similar to how a traditional Windows command shell
would display file system data. However, there are differences in detail. For example, the Alias provider
does not (need to) support hierarchical data, since there is no concept of a folder of aliases.

Built-in Windows PowerShell providers are contained in snapins (which may also contain cmdlets). The
built-in providers are contained in the Core and Security snapins that are loaded automatically by
Windows PowerShell.

Using the get-psdrive Cmdlet
Windows PowerShell providers expose several different stores of information using the file system
metaphor, but not all of these drives are conventional file system drives. You can demonstrate the vari-
ety of “drives” exposed by Windows PowerShell by typing the following command:

get-psdrive

184

Part I: Finding Your Way Around Windows PowerShell

13_946939 ch09.qxp 3/15/07 7:04 PM Page 184

The preceding command returns all current drives from all available providers. The get psdrive
cmdlet has two parameters, which are implicit in the preceding command: -name and -psprovider,
and the default value for both is “*”. So, the preceding command is actually equivalent to the command:

get-psdrive -name * -psprovider *

Figure 9-2 shows the results on a Windows XP machine.

Figure 9-2

The get-psdrive cmdlet has four parameters (in addition to the common parameters covered in
Chapter 6):

❑ Name — A positional parameter whose value is the name of a drive; it has a default value, the
wildcard *.

❑ Psprovider — Specifies the provider. An optional named parameter; it has a default value, the
wildcard *.

❑ literalName — Specifies a name for a drive that must be interpreted literally. In other words,
any characters that are wildcards are treated as literal characters. An optional positional param-
eter; it cannot be used if the -name parameter is used.

❑ Scope — Specifies the scope. An optional named parameter.

For more information about named parameters, see Chapter 6.

The get-psdrive cmdlet supports the following providers, all in the System.Management
.Automation.Core namespace, in Windows PowerShell version 1:

❑ FileSystem — Exposes information about conventional file system drives

❑ Alias — Exposes information about aliases available in the current system state

❑ Certificate — Exposes information about certificates on the current machine

❑ Environment — Exposes information about the environment variables on the current machine

❑ Function — Exposes information about functions in the current system state

❑ Registry — Exposes information about selected hives in the registry

❑ Variable — Exposes information about variables in the current system state

185

Chapter 9: Retrieving and Working with Data

13_946939 ch09.qxp 3/15/07 7:04 PM Page 185

To see which drives are available from a specified provider, you supply a value for the -psprovider
parameter. For example, to see the drives returned by the Registry provider, type the following command:

get-psdrive -psprovider Registry

Figure 9-3 shows the result.

Figure 9-3

You can use the format-list cmdlet, which I introduced in Chapter 7, to display the information in a
list format. As you can see in the lower part of Figure 9-3, this causes additional information about each
drive to be displayed.

To see a convenient display of which drives on a machine are associated with which provider, use this
command:

get-psdrive |
select-object Name, Provider |
group-object provider |
format-list

As you can see in Figure 9-4, only two providers (FileSystem and Registry) by default expose more
than one drive. The get-psdrive cmdlet returns drives, on this particular machine, which include file
store drives that represent a conventional floppy drive, a hard drive, a CD/DVD drive, and two registry
drives: HKCU (Current User) and HKLM (Local Machine), which represent the correspondingly named
registry hives.

To explore what is in the drives that the get-psdrive cmdlet returns, use the get-childitem cmdlet
described later in this chapter.

186

Part I: Finding Your Way Around Windows PowerShell

13_946939 ch09.qxp 3/15/07 7:04 PM Page 186

Figure 9-4

The remove-psdrive cmdlet deletes a PowerShell drive. In addition to the common parameters, the
remove-psdrive cmdlet supports the following parameters:

❑ name — Specifies the name(s) of the PowerShell drive(s) to be removed.

❑ psprovider — Specifies which PowerShell providers the drives to be removed belong to.

❑ scope — An index used to identify the scope.

❑ force — Allows the cmdlet to override nonsecurity restrictions.

❑ whatif — Describes what would happen if you executed the command. No change is actually
made.

❑ confirm — Specifies that PowerShell should prompt for confirmation before executing the
command.

Suppose that you had created a drive called Scripts whose root folder is located at
C:\PowerShellScripts, using the new-psdrive cmdlet:

new-psdrive -name Scripts -psProvider FileSystem -root C:\PowerShellScripts

To remove that PowerShell drive, you use the remove-psdrive cmdlet:

remove-psdrive –name Scripts –psProvider FileSystem

187

Chapter 9: Retrieving and Working with Data

13_946939 ch09.qxp 3/15/07 7:04 PM Page 187

To demonstrate that you have successfully removed the Scripts drive, use this command:

set-location Scripts:

You will see the following error message, which indicates that the Scripts drive no longer exists on the
system:

Set-Location : Cannot find drive. A drive with name ‘Scripts’ does not exist.
At line:1 char:3
+ cd <<<< Scripts:

Using the set-location Cmdlet
Once you find supported drives with Windows PowerShell, you will likely want to navigate around in
them. You use the set-location cmdlet to do that. To simplify the use of providers and drives,
Windows PowerShell defines several aliases.

To find the aliases for set-location on your system, type this command:

get-alias |
where-object {$_.Definition -eq “set-location”}

The results are shown in Figure 9-5. Whether you use sl, cd or chdir is your choice.

Figure 9-5

The get-alias cmdlet with no parameters returns objects representing all aliases on the current system.
The where-object cmdlet in the second step of the pipeline filters those so that only those whose
Definition property has the value of set-location are passed on to the default formatter.

The set-location cmdlet supports the following parameters in addition to the common parameters:

❑ path — Specifies the path for the new working location. This is a positional parameter in posi-
tion 1. The default is the empty string.

❑ literalPath — Specifies a path. The value of this parameter is to be interpreted literally. In
other words, any wildcard characters in the path are treated literally.

❑ passthru — Specifies that the object created by the cmdlet is to be passed along the pipeline.

❑ stackname — Specifies the stack to which the location is being set. If no value is specified, then the
current working stack is used. A stack is a data structure based on the last in, first out principle.

188

Part I: Finding Your Way Around Windows PowerShell

13_946939 ch09.qxp 3/15/07 7:04 PM Page 188

To set the location to the root directory of the C: drive from any location, simply type:

set-location c:\

or:

set-location –path c:\

The preceding command works whether you are in a drive supported by the FileSystem provider or in
a location supported by another provider, for example, Registry or Certificate.

If your system supports the cd alias, you can do the same thing by typing:

cd c:\

If you don’t want to change drives (in other words, you want to change folder on a drive), you don’t
need to provide the drive letter. For example, if you want to stay on the current FileSystem drive and
set the location to the root directory, simply type:

set-location \

or, using the cd alias:

cd \

If you want to navigate to a location whose name includes spaces, you must enclose the value specified
for the -path parameter in paired quotation marks, or format it as a variable containing the full name.
For example, to navigate to C:\Documents and Settings\Administrator, you must type:

set-location “C:\Documents and Settings\Administrator”

or:

$loc= “C:\Documents and Settings\Administrator”
set-location $loc

If you omit the quotation marks when specifying a location name containing one or more spaces, an
error message is displayed.

You can use the .. abbreviation for a parent. You can navigate across multiple levels. For example, to
move from C:\Documents and Settings\Administrator to the root directory, type this command
(which moves you to the parent of a parent):

set-location ..\..

Figure 9-6 shows the results from the two preceding commands.

Figure 9-6

189

Chapter 9: Retrieving and Working with Data

13_946939 ch09.qxp 3/15/07 7:04 PM Page 189

If your system has a c: function specified in the relevant profile files, you may only need to type

c:

to switch from any drive to the previously current location on drive c:.

Using the passthru Parameter
The normal behavior of the set-location cmdlet is to set a new location. By using the -passthru
parameter, you cause the set-location cmdlet to pass objects to later steps in a pipeline.

The following command switches to the environment variable drive (env:):

set-location env:

The result is shown in the upper part of Figure 9-7.

Figure 9-7

Notice that nothing is passed to the default formatter, so the prompt for the env: drive is simply dis-
played. However, if you use the -passthru parameter, the set-location cmdlet creates a PathInfo
object and passes it to the pipeline and to the default formatter:

set-location env: -passthru

You can confirm that a PathInfo object has been created by using the get-member cmdlet, as in the fol-
lowing command:

set-location env: -passthru | get-member

A PathInfo object relating to the environmental variable drive is created and passed to the default for-
matter with the result shown in the Figure 9-7.

The get-location, push-location and pop-location cmdlets are described in
Chapter 15.

190

Part I: Finding Your Way Around Windows PowerShell

13_946939 ch09.qxp 3/15/07 7:04 PM Page 190

Using the get-childitem Cmdlet
The get-psdrive cmdlet returns information about drives on a machine or that you created, and the
set-location cmdlet lets you switch between various drives and between folders within drives. The
get-childitem cmdlet allows you to retrieve information about the items in a folder.

The behavior of the get-childitem cmdlet has been the subject of considerable discussion during
PowerShell’s development. Some users, including myself, found the semantics surprising in some situa-
tions. The behavior described in this section is that found in the final release version of PowerShell 1.0.

Windows PowerShell typically supports aliases for the get-childitem cmdlet. You can find those
aliases on your machine by using the following command:

get-alias |
where-object {$_.Definition –eq “get-childitem”}

In a default install, the aliases dir, ls, and gci are likely to be available to you.

In addition to the common parameters, the get-childitem cmdlet supports the use of a number of
parameters. However, since the get-childitem cmdlet can be used with a range of providers, not all of
the supported parameters work with all providers. The supported parameters are:

❑ path — A positional parameter, in position 1, which specifies the location relative to which the
child items are to be found. If no value is supplied, the default is the current location. It cannot
be used with the –literalPath parameter.

❑ literalpath — A positional parameter, in position 1, whose value is to be interpreted literally.
It cannot be used with the –path parameter.

❑ include — Filters in items among those specified by the value of the -path parameter.

❑ exclude — Filters out items among those specified by the value of the -path parameter.

❑ filter — Specifies filter elements as required and supported by providers.

❑ name — A boolean-valued parameter. If $true, then only the name of an item is streamed. The
default value is $false, in which case the item (not just its name) is streamed.

❑ recurse — A boolean-valued parameter that specifies whether or not folders are to be
searched recursively.

❑ force — A boolean-valued parameter that may expose additional items, for example hidden
files in a directory. The cmdlet should still respect any security settings on a folder.

In Chapter 8, you created a directory called Disposable and populated it and a subfolder with some
test files. You need these structures for the following examples.

To find the items contained in the C:\Disposable folder from any location, you can type the following
command:

get-childitem -path C:\Disposable

191

Chapter 9: Retrieving and Working with Data

13_946939 ch09.qxp 3/15/07 7:04 PM Page 191

The value of the path parameter specifies the location relative to which the child items are to be found,
in this case the C:\Disposable folder. Figure 9-8 shows the result.

Figure 9-8

The -include parameter filters items specified by the -path parameter. In the following example, move
to the Disposable folder using the command

set-location C:\Disposable

modified as appropriate for your machine, if you used a drive other than C:. Then use the * wildcard to
retrieve all child items of the Disposable folder:

get-childitem *

That retrieves all files and folders in the Disposable directory, as shown in the upper part of Figure 9-9.

Figure 9-9

When you add the include parameter with a value of Test[12].txt:

get-childitem * -include Test[12].txt

192

Part I: Finding Your Way Around Windows PowerShell

13_946939 ch09.qxp 3/15/07 7:04 PM Page 192

only the files Test1.txt and Test2.txt are returned, as shown in the lower part of Figure 9-9. In this
example, the value supplied for the -include parameter uses a regular expression. With regular expres-
sions, the class, [12] matches any of the characters contained in it, that is the numeric digits 1 and 2.
Thus, Test[12].txt matches only Test1.txt and Test2.txt.

However, the -include parameter can occasionally produce surprising results for a parameter
intended to filter results. If you modify the command to

get-childitem * -include *

the “filtered” children are more than the original results (which were shown in Figure 9-9), as shown in
the lower part of Figure 9-10. Not only do you see the children of C:\Disposable, but you also see the
children of the C:\Disposable\subfolder folder.

Figure 9-10

Windows PowerShell interprets the * as matching any file or folder in the current directory. It then finds
any “child” of those files and folders. Windows PowerShell treats a file as being its own child. So, while
all the files in the Disposable directory are displayed. The subfolder folder’s children are also found.

As another example of the potentially counterintuitive behavior of the get-childitem cmdlet consider
the following command:

get-childitem –path .

indicates that the children of the current location are to be found. As you can see in Figure 9-11, all the
children of the C:\Disposable folder are listed.

193

Chapter 9: Retrieving and Working with Data

13_946939 ch09.qxp 3/15/07 7:04 PM Page 193

Figure 9-11

However, if you add the –include parameter, as in the following command:

get-childitem –path . –include *.txt

no children are displayed, as you can see in the middle section of Figure 9-11. If the –include parameter
is to behave as a filter I expected the .txt files to be displayed. However, if you use the –exclude
parameter, as in the following command:

get-childitem –path . –exclude *.txt

it behaves as I expected.

Suffice it to say, that the behavior of the get-childitem cmdlet and its parameters in the preceding
examples (and others) can cause significant confusion to some users. In the light of that I suggest you
exercise significant care if you use the get-childitem cmdlet to pipe objects to later pipeline steps. As
the preceding examples indicate, you may not be piping what you expect.

Using the get-location Cmdlet
The get-location cmdlet returns the current location for a specified provider or, if no provider is spec-
ified, for the current provider. If you use the current location as part of the Windows PowerShell prompt
when using a FileSystem provider drive, then the get-location cmdlet doesn’t tell you much that
you don’t already know. However, if you use an alternate prompt, such as the current date and time, the
get-location cmdlet lets you know which directory you are currently working in.

The following parameters are available for use with the get-location cmdlet, in addition to the com-
mon parameters. All parameters of the get-location cmdlet are named parameters.

194

Part I: Finding Your Way Around Windows PowerShell

13_946939 ch09.qxp 3/15/07 7:04 PM Page 194

❑ psprovider — Specifies a provider (or providers)

❑ psdrive — Specifies a drive (or drives)

❑ stack — If present, specifies that the item is to be taken from the current stack

❑ stackname — Specifies a stack from which items are to be retrieved

The -psprovider and -psdrive parameters can be used together. Similarly, the -stack and
-stackname parameters can be used together.

The straightforward command

get-location

retrieves the current location for the current provider and displays the result as a full path, as shown in
Figure 9-12.

Figure 9-12

If you want to find the current working location in any provider, you can explicitly specify the name of
the provider of interest using the -psprovider parameter. For example, if you are working in the file
system and want to find out your most recent location in the registry, use the following command:

get-location -psprovider Registry

Figure 9-13 shows the result.

Figure 9-13

Some providers support the ability to have a current location on multiple drives. For example, using the
FileSystem provider, you can have, for example, multiple drives, such as C: and D:. You have a current
location on each drive. When you start a PowerShell console, the current location on each drive is the
root folder, except on the system drive, where the folder is specified in the variable $home. For me, that
is the folder C:\Documents and Settings\Andrew Watt.

195

Chapter 9: Retrieving and Working with Data

13_946939 ch09.qxp 3/15/07 7:04 PM Page 195

To find your location on drive D, use the following command:

get-location -psprovider FileSystem -psdrive D

As shown in the upper part of Figure 9-14, the current location on drive D: using the FileSystem
provider is returned.

Figure 9-14

Be careful not to include the colon in the drive name. As shown in the lower part of Figure 9-14, includ-
ing the colon in the drive name produces an error message:

get-location -psprovider FileSystem -psdrive D:

Using the get-content Cmdlet
The get-content cmdlet returns the content of a specified item at a specified location. You are likely to
have aliases available to use the get-content cmdlet, for example cat, type, and gc. If you are unsure
which aliases are available on your system use, the following command to find out:

get-alias |
where-object {$_.definition -eq “get-content”}

The Windows PowerShell help files occasionally differ in completeness or accuracy from the actual
implementation of a cmdlet. A useful technique to find the current functionality is to use the definition
property. For example, to retrieve the information for the get-content cmdlet, use this command:
(get-command get-content).definition.

The get-content cmdlet supports the following parameters, in addition to the common parameters.

❑ Path — Specifies the path to the item or file that data is to be retrieved from.

❑ Readcount — Specifies how many lines are to be sent through the pipeline at a time. The
default value is 0 (all lines).

The -stack and -stackname parameters are used to retrieve items from the default
stack or a named stack, in situations where you use the push-location and pop-
location cmdlets. These cmdlets are described in Chapter 15.

196

Part I: Finding Your Way Around Windows PowerShell

13_946939 ch09.qxp 3/15/07 7:04 PM Page 196

❑ Totalcount — Specifies the number of elements (often lines) to retrieve from the target file or
item. The default value is -1 (retrieve all lines).

❑ Filter — Specifies filter elements as required and supported by providers.

❑ Include — Specifies which container’s items are to be retrieved. The value of this parameter
qualifies the value of the –path parameter.

❑ Exclude — Specifies which container’s items are not to be retrieved. The value of this parame-
ter qualifies the value of the –path parameter.

❑ Force — Allows, subject to security, overriding of some constraints such as file renaming.

❑ Credential — Specifies a credential to authenticate access.

❑ Delimiter — Specifies an alternative delimiter between “lines.”

❑ Wait — A boolean parameter. If $true then a watch is kept on the item from which elements
are being retrieved, so that if the item is updated the newly added item is retrieved.

❑ Encoding — Specifies the character encoding to be used to display the content.

In the following examples I use a simple text file, TenLines.txt to demonstrate the use of get-content.
The file contains the following content, saved to the root directory of drive C.

This is line 1.
This is line 2.
This is the third line.
This is the fourth line.
This is line 5.
This is line 6.
This is line 7.
This is line 8.
This is line 9.
This is line 10.

Simple use of the get-content cmdlet specifies a single file from which to retrieve data. For example,
to retrieve all the data in the file C:\TenLines.txt, type the following command:

get-content -path C:\TenLines.txt

As you can see in Figure 9-15, all the content of the file is retrieved and displayed on the console.

Figure 9-15

197

Chapter 9: Retrieving and Working with Data

13_946939 ch09.qxp 3/15/07 7:04 PM Page 197

To limit the number of lines retrieved from a file use the –totalcount parameter. Its value is an integer.
The following command limits the number of lines retrieved to 5.

get-content –path C:\TenLines.txt –totalcount 5

The result is shown in Figure 9-16.

Figure 9-16

Be careful if you use the –delimiter parameter. The delimiter is included in each “line.” Suppose that
you have a simple file, Delimiter.txt, with the following content:

and;bcd;ckk

To split the text into “lines” at each semicolon use the following command:

$chunks = get-content Delimiter.txt -delimiter “;”

The variable $chunks is an array with the following content:

and;
bcd;
ckk

Notice that the semicolon character is included in the first two elements of the array.

The get-content cmdlet can be combined with other cmdlets in a pipeline. For example, using the
measure-object cmdlet you can display information such as counts of lines, words, or characters in a
text file. I discuss the measure-object cmdlet in the next section.

To do a count of lines, words, and characters in the C:\TenLines.txt file, use the following command:

get-content -path C:\TenLines.txt |
measure-object -line -word -character |
format-table Lines, Words, Characters -auto

Figure 9-17 shows the result. If you don’t specify a step using the format-table cmdlet, the default for-
matter displays a blank Property column. By specifying specific columns to be displayed, the appear-
ance is a little tidier. I discuss formatting of output in Chapter 7.

198

Part I: Finding Your Way Around Windows PowerShell

13_946939 ch09.qxp 3/15/07 7:04 PM Page 198

Figure 9-17

The -wait parameter allows you to keep an eye on any new content being added to a file. To run this
example, you need to have two Windows PowerShell windows open.

First, redirect a literal string to create a file C:\Content.txt:

“Hello world!” > C:\Content.txt

then using the get-content cmdlet, confirm that the file has been created and the text successfully
added using this command:

get-content -path C:\Content.txt

Next, add another line to Content.txt. To append text, you use the >> operator.

“This is a second line.” >> C:\Content.txt

Then confirm that the second line of text has been appended using:

get-content -path C:\Content.txt

Figure 9-18 shows the appearance in the data entry Windows PowerShell window after the four preceding
steps.

Figure 9-18

Now switch to the data-monitoring Windows PowerShell window. First use the get-content cmdlet
with only the -path parameter to confirm the content and also to demonstrate that the prompt is dis-
played immediately after the file’s content is displayed.

get-content -path C:\Content.txt

199

Chapter 9: Retrieving and Working with Data

13_946939 ch09.qxp 3/15/07 7:04 PM Page 199

Then add a -wait parameter:

get-content -path C:\Content.txt -wait

Notice that the same text is in the file but the prompt is not displayed. Instead, the cursor flashes on a
blank line. Figure 9-19 shows the situation in the data-monitoring window after the preceding two steps.

Figure 9-19

Switch to the data entry window and add two more lines to Content.txt using the following com-
mands. Notice that after each command is executed, the result displayed in the data-monitoring window
is updated to reflect the updated content C:\Content.txt.

“This is a THIRD line.” >> C:\Content.txt
“This is a FOURTH line.” >> C:\Content.txt

Figure 9-20 shows the data-monitoring window after the execution of the two preceding commands.
There appears to be a bug when displaying data added while the –wait parameter is in operation.

Figure 9-20

The -include parameter specifies from which container (specified in the path parameter) items are to
be retrieved.

The following example uses the files in the C:\Disposable directory used earlier in the chapter. To
retrieve the content of each of the .txt files in the folder, you can use the include parameter, as in this
command:

get-content -path C:\Disposable* -include *.txt

To filter the files further, you can use wildcards in the value of the include parameter. For example to
retrieve the content of only Test2.txt and Test3.txt, use the following command:

get-content -path C:\Disposable* -include *[23].txt

200

Part I: Finding Your Way Around Windows PowerShell

13_946939 ch09.qxp 3/15/07 7:04 PM Page 200

Figure 9-21 shows the result of running the two preceding commands.

Figure 9-21

Using the measure-object Cmdlet
The measure-object cmdlet allows you to measure or calculate properties of Windows PowerShell
objects. One use of the measure-object cmdlet is to provide information on summary criteria, such as
line count or word count, on files whose content is retrieved using the get-content cmdlet.

In addition to the common parameters, the measure-object cmdlet supports the following parameters:

❑ InputObject — Specifies the input object. If the input comes from a pipeline, this parameter is
omitted.

❑ Property — Specifies a property on which the cmdlet is to operate.

❑ Average — Specifies that the mean of some numeric items is to be calculated.

❑ Sum — Specifies that the sum of numeric values is to be calculated.

❑ Minimum — Specifies that the minimum value in a series of numeric values is to be found.

❑ Maximum — Specifies that the maximum value in a series of numeric values is to be found.

❑ Line — Specifies that a line count of text data is to be carried out.

❑ Word — Specifies that a word count of text data is to be carried out.

❑ Character — Specifies that characters in text data are to be counted.

❑ IgnoreWhitespace — A boolean value that specifies whether or not whitespace is to be
ignored. By default, whitespace characters are counted.

The -inputObject and -property parameters apply to numeric and text input. The -average, -sum,
-minimum, and -maximum parameters are used with numeric input. The -line, -word, -character,
and IgnoreWhitespace parameters are used with text input.

The following code calculates the average, sum, minimum, and maximum length of the files in a folder.
Objects are supplied to the measure-object cmdlet via the pipeline:

get-childitem * |
measure-object –property Length -Average -Sum -Minimum -Maximum |
format-table Count, Average, Sum, Minimum, Maximum -auto

201

Chapter 9: Retrieving and Working with Data

13_946939 ch09.qxp 3/15/07 7:04 PM Page 201

Figure 9-22 shows the results. The –property parameter specifies that the Length property of the child
items is the basis for the calculations. Notice that the -average, -sum, -minimum, and -maximum param-
eters are used. The count of the items is calculated automatically. The columns specified in the format-
table statement avoid the display of a repeated Property column (which the default formatter would
otherwise create).

Figure 9-22

You can also use the measure-object cmdlet with the get-childitem cmdlet to count the number of
files and subfolders in a folder. To find the number of files and folders in C:\Windows\System32 use
this command:

get-childitem -path C:\Windows\System32* |
measure-object

The * wildcard at the end of the path parameter matches the names on all files and subfolders. If you
modify the wildcard to *.*, as in the following command, only items whose name includes characters
followed by a period followed by characters are counted.

get-childitem -path C:\Windows\System32*.* |
measure-object

Figure 9-23 shows the results on one Windows XP machine.

Figure 9-23

202

Part I: Finding Your Way Around Windows PowerShell

13_946939 ch09.qxp 3/15/07 7:04 PM Page 202

The new-item Cmdlet
The new-item cmdlet allows you to create a new item in a namespace. In addition to the common
parameters, the new-item cmdlet supports the following parameters:

❑ path — Specifies the path to the new item

❑ name — Specifies the name of the new item

❑ itemtype — Specifies the type of the new item (varies by provider)

❑ value — Specifies, if appropriate, a value for the new item

❑ force — Allowing for security, may override other constraints

❑ credential — Specifies a credential for the action

❑ whatif — Shows the user the potential result, but no change is made

❑ confirm — Prompts the user to confirm whether or not a new item or items should be created

To use the new-item cmdlet to create a new text file, C:\Test2.txt, follow these steps:

First, check the text file content of the C:\ directory:

get-childitem -path C:\T*.txt

Next, use new-item to create a new item C:\Test2.txt and specify that it is a file:

new-item -path C:\Test2.txt -type file

Then confirm that a new file has been added:

get-childitem -path C:\T*.txt

Figure 9-24 shows the before and after results.

To add a new folder named C:\TestFolder, use this command:

new-item -path C:\TestFolder -type directory

203

Chapter 9: Retrieving and Working with Data

13_946939 ch09.qxp 3/15/07 7:04 PM Page 203

Figure 9-24

The new-psdrive Cmdlet
The new-psdrive cmdlet allows you to create a custom drive. For example, you might want to create a
new drive called Scripts, which is located at C:\PowerShellScripts. This facility allows you conve-
nient access to folders which might require tedious typing.

In addition to the common parameters, the new-drive cmdlet supports the following parameters:

❑ Name — Specifies the name of the custom drive

❑ PSprovider — Specifies which provider is to be used to create the drive

❑ Root — Specifies the location of the root of the custom drive

❑ Description — Provides a description of the drive’s use or purpose

❑ Scope — Specifies the scope for the new drive

❑ Credential — Specifies the credential supplied to obtain any necessary authorization to cre-
ate the new drive

❑ Whatif – Shows the user the potential result, but no change is made

❑ Confirm — The user is asked to confirm whether or not a new drive should be created

To create a new drive named Writing that allows easy access to the C:\My Writing folder, which
already exists on one of my machines, use this command:

204

Part I: Finding Your Way Around Windows PowerShell

13_946939 ch09.qxp 3/15/07 7:04 PM Page 204

new-psdrive -Name Writing -psProvider FileSystem -Root “C:\My Writing”

To switch to the newly created Writing drive use this command:

cd Writing:

In this situation, you must provide the colon with the drive name or you will get an error message.

To find the information about this book, I typed this command:

get-childitem *PowerShell*

Figure 9-25 shows the results on the machine in question.

Figure 9-25

Summary
Access to data stores in Windows PowerShell is built on providers. Providers are .NET programs that allow
PowerShell users to access data in a data store and present that data in a way similar to a file system.

I introduced you to several cmdlets that allow you to access data when using Windows PowerShell or
navigate a data store:

❑ get-psdrive — Finds what PowerShell drives are available

❑ set-location — Sets a location

❑ get-childitem — Retrieves information about child items of a specified location

❑ get-content — Retrieves content from a file

❑ measure-object — Allows you to calculate and display summary information about, for
example, a file

❑ new-item — Allows you to create a new item, for example, a file or folder

❑ new-psdrive — Allows you to create a new custom drive

205

Chapter 9: Retrieving and Working with Data

13_946939 ch09.qxp 3/15/07 7:04 PM Page 205

13_946939 ch09.qxp 3/15/07 7:04 PM Page 206

Scripting with Windows
PowerShell

In the preceding chapters, I illustrated the functionality of individual cmdlets but put little empha-
sis on using Windows PowerShell as a scripting language. In this chapter, I introduce several
aspects of the Windows PowerShell language that make it suitable for scripting, and describe and
demonstrate how many of its various components can be used. This foundational understanding
of the PowerShell scripting language, taken together with your understanding of the various
cmdlets, built up in the preceding chapters, will give you the knowledge necessary to explore in
the following chapters the range of ways that Windows PowerShell can be used.

Chapter 11 introduces several more features of the Windows PowerShell language.

Enabling Scripts on Your Machine
At the time of this writing, the default configuration of Windows PowerShell when it is installed
doesn’t allow you to run scripts. If your local administrator has enabled scripts on your machine,
then you may not need to take the steps described later in this section.

Windows PowerShell supports four execution policies, listed here. An execution policy determines
whether you can run PowerShell scripts at all and which scripts you can run. The Restricted exe-
cution policy is the default. The four execution policies supported in Windows PowerShell 1.0 are:

❑ Restricted — Windows PowerShell operates as an interactive shell only. You cannot
run any .ps1 scripts or .ps1xml configuration files at startup.

❑ AllSigned — Runs only scripts that have first been signed by a publisher that you trust.
This includes scripts that you create on the local computer.

14_946939 ch10.qxp 3/15/07 7:04 PM Page 207

❑ RemoteSigned — Windows PowerShell runs locally authored scripts that are not digitally
signed, but any scripts downloaded from applications like Internet Explorer and Microsoft
Outlook must be signed by a publisher that you trust before you can run them.

❑ Unrestricted — PowerShell runs all scripts. Scripts downloaded from applications like
Internet Explorer display a prompt that indicates that they have been downloaded.

If you attempt to run a script where the execution policy is Restricted and therefore forbids its execu-
tion, you will see an error message similar to the one in Figure 10-1.

Figure 10-1

If you attempt to execute an unsigned script when the execution policy is AllSigned, you will see an
error message similar to the one in Figure 10-2.

Figure 10-2

208

Part I: Finding Your Way Around Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:04 PM Page 208

The four execution policies cover a spectrum of increasingly easy access to running Windows
PowerShell scripts, which may, of course, have both good and bad points. In a testing scenario if you
know that you won’t download any malicious scripts, then Unrestricted is very convenient. The
examples in this chapter assume that you have set the execution policy to Unrestricted— for a develop-
ment and test machine only! You can, of course, sign any scripts and run them if that is required by an
AllSigned execution policy. If there is a likelihood that you may run downloaded scripts, then the
RemoteSigned policy gives you a little more protection.

To check the current execution policy on your machine, type this command:

get-execution policy

Figure 10-3 shows the results on a machine with the default settings. Notice that the value of the
ExecutionPolicy key is currently set to Restricted. When I try to execute a simple script, execution
of the script does not take place and an error message is displayed.

Figure 10-3

You can access the same information using the Registry Editor, as shown in Figure 10-4.

To change the setting for the Execution Policy by using the Registry Editor, you need
to have administrator privileges on the machine.

If you download seemingly useful Windows PowerShell code from the Internet, be
sure that you understand what it does before you copy and paste it into your own
scripts. If you create and save the script, even if it includes malicious code that you
have copied and pasted into it, then you bypass the protection from any execution
policy you may have in place.

209

Chapter 10: Scripting with Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:04 PM Page 209

Figure 10-4

To modify the value for Execution Policy in the Registry Editor, right-click on Execution Policy, select
Modify from the context menu then enter a valid, desired value in the dialog box that is displayed (see
Figure 10-5).

Figure 10-5

210

Part I: Finding Your Way Around Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:04 PM Page 210

If you prefer, you can modify the value for ExecutionPolicy by using Windows PowerShell. Type
the following command (assuming that your current location is HKLM:\SOFTWARE\Microsoft\
PowerShell\1\ShellIds\Microsoft.PowerShell>) to change the setting to RemoteSigned:

set-itemproperty -path . -name ExecutionPolicy -value RemoteSigned

Then check that you have successfully changed the value by using the following command:

get-itemproperty .

or:

get-executionpolicy

Figure 10-6 shows the value for ExecutionPolicy successfully changed to RemoteSigned. Windows
PowerShell should recognize the change in execution policy immediately. If the ExecutionPolicy has
not changed, then check the set-itemproperty statement for any errors.

Figure 10-6

Once you have changed the execution policy to RemoteSigned, you should be able to run any scripts
that you create locally. Here is a simple test script, SimpleTest.ps1, that you can use to confirm that
you can run scripts.

$a = read-host “Enter a number to assign to the variable “‘$a’;
write-host ‘$a’”= $a”;

The first line uses the read-host cmdlet to get some input from the user. The second line uses the
write-host cmdlet to tell the user that the value entered was assigned to the variable $a. Up to this
point, you have entered input directly on the command line, and the default formatter (covered in
Chapter 7) has displayed the output. When running scripts, the read-host and write-host cmdlets
are useful to capture input from the user and to display desired output. I describe both cmdlets later in
this section.

211

Chapter 10: Scripting with Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:04 PM Page 211

To confirm that you can now execute Windows PowerShell scripts, type the following command (it
assumes that you have saved a Windows PowerShell script, SimpleTest.ps1, in the C:\Pro
Monad\Chapter 10 directory):

& “C:\Pro PowerShell\Chapter 10\SimpleTest.ps1

If your current working directory is the folder you saved the script in, you can run it using this command:

. \SimpleTest.ps1

or:

. \SimpleTest

Figure 10-7 shows the script SimpleTest.ps1 executed using each of the preceding three options.

Figure 10-7

To view the Windows PowerShell Help file about permissions relating to signing scripts, use the follow-
ing command:

help about_signing

Using the read-host Cmdlet
The Read-Host cmdlet reads a line of input from the command line. It supports the common parame-
ters described in Chapter 6 and the following parameters:

❑ Prompt — A positional parameter in position 1, which takes as its value a string that will
become the prompt to the user. If the prompt includes one or more space characters the value
must be enclosed in paired quotation marks or paired apostrophes.

❑ AsSecureString — A boolean parameter that is optional. If it is $true, then the string input
by a user is echoed as * characters.

The following script, ReadHostTest.ps1, demonstrates how the read-host cmdlet can be used.

$name = read-host “Enter your name “;
$password = read-host “Enter your password “ -AsSecureString;
write-host “Your name is $name”;
write-host “Your password is $password”

212

Part I: Finding Your Way Around Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:04 PM Page 212

Two variables, $name and $password, are used to hold the values of user-entered information. The posi-
tional parameter used in the preceding code is the prompt parameter. Notice in Figure 10-8 that a colon
character is automatically added to the prompt text that you provide in your script. The $password vari-
able holds a password. Notice too that the -AsecureString parameter is used when the password is
entered and that in Figure 10-8 the password is echoed to the screen as asterisks. When you try to display
the value of $password, Windows PowerShell simply displays System.Security.SecureString.

Figure 10-8

Notice that the use of the SecureString parameter with the read-host cmdlet means that the corre-
sponding variable $password cannot be displayed in plain text using the write-host cmdlet
(described next). Instead, the user only sees that it is a System.Security.SecureString object.

It’s important that you know how secure the value of $password is. As written, ReadHostTest.ps1
uses variables with script scope. So, once the script has ended $password can’t be accessed from the
PowerShell command line, as you can see in Figure 10-9. If you type

$password

there is no output, because outside the scope of the script no $password variable exists.

Figure 10-9

If you made the $name and $password variables global by modifying the script, as in
ReadHostTest2.ps1, the $password variable continues to exist, but you can’t get its value just by typing

$password

at the command line, as you can see in Figure 10-10. PowerShell simply tells you that $password is a
System.Security.SecureString object.

213

Chapter 10: Scripting with Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:05 PM Page 213

Figure 10-10

The following code reveals the value of the System.Security.SecureString object, which is $password.

$BSTR = [System.Runtime.InteropServices.marshal]::SecureStringToBSTR($password)
$openString = [System.Runtime.InteropServices.marshal]::PtrToStringAuto($BSTR)
$openString

The SecureStringToBSTR() method allocates a BSTR (basic string) and copies the content of a secure
string into it. The PtrToStringAuto() method allocates a managed string, $openString, and copies
the value of the BSTR into it. You can then display the value of $openString as shown in Figure 10-10.
Of course, the password displayed is one that is inappropriate for use in real life.

Using the write-host Cmdlet
The write-host cmdlet displays specified objects to the console. When you use many cmdlets, you
don’t need to use the write-host cmdlet, since the objects passed along a pipeline are displayed by
default by the default formatter (described in Chapter 6). On other occasions, for instance in the first
example in the preceding read-host section, if you want to see the value of a variable, you can use the
write-host cmdlet to display it, but it’s not necessary to write

write-host $name

since the command

$name

will output the value of the $name variable to the console. The write-host cmdlet becomes more useful
when you want to customize the display in some way. For example, you can specify the background
color or the foreground color of the value(s) to be displayed.

In addition to the common parameters the write-host cmdlet supports the following parameters:

❑ Object — A positional parameter in position 1. Specifies the object (or objects) that are to be
written to the console.

❑ NoNewLine — A boolean parameter. If present, after a line is written to the console, it is not fol-
lowed by a newline.

❑ Separator — A string to be output to the console when multiple objects are processed by the
write-host cmdlet. The value of the string is used as the separator between the values to be
displayed.

214

Part I: Finding Your Way Around Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:05 PM Page 214

❑ BackgroundColor — Specifies the background color.

❑ ForegroundColor — Specifies the foreground color.

You use the write-host cmdlet when you want to output information that is not being processed along a
pipeline. In such scenarios, no output is displayed by default. For example, in the following code,
WriteHostTest.ps1, the two values read in from the command line would simply exist as the variables
$name and $password and not be displayed (since the two write-host statements are commented out).
In some settings, that may be what you want. However, if objects are being passed along the pipeline (such
as in the get-process statement), the objects are passed to the default formatter (in the absence of, say, a
format-list or format-table statement) and then displayed.

$name = read-host “Enter your name “;
$password = read-host “Enter your password “ -AsSecureString;
#write-host “Your name is $name”;
#write-host “Your password is $password”;

get-process svc*

Run the code with this command, assuming that the script file is in the current directory:

.\WriteHostTest.ps1

Figure 10-11 shows the result.

Figure 10-11

If you want to display the values of $name and $password later, uncomment the lines with the write-
host cmdlet. If you want the value of $password to be visible in clear text, use the technique I showed
you in the preceding section on the read-host cmdlet.

The -foregroundColor and -backgroundColor parameters of the write-host cmdlet allow you to
alter the color of the text or the background when writing to the host, using the write-host cmdlet. The
parameters support the named colors enumerated in the following table.

Black DarkBlue DarkGreen DarkCyan

DarkRed DarkMagenta DarkYellow Gray

DarkGray Blue Green Cyan

Red Magenta Yellow White

215

Chapter 10: Scripting with Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:05 PM Page 215

One use of the write-host cmdlet is to highlight prompts to the user. For example, instead of using
read-host alone to read in data from the user (with the prompt being supplied as the value of the
–prompt parameter of read-host), you can use the write-host cmdlet to display a more visible
prompt to the user, then use the read-host cmdlet when capturing the user’s input in a variable. The
following example shows you how.

Save the following code as WriteHostTest2.ps1. Notice that the –NoNewLine parameter is used to
keep the cursor at the end of the line where the text specified as the value of the write-host cmdlet is
displayed. Notice too that the –foregroundcolor and –backgroundcolor parameters are used to
highlight the prompt to the user.

write-host “Enter your name: “ -NoNewLine -foregroundcolor black

-backgroundcolor white;
$name = read-host;
write-host “Enter your password: “ -NoNewLine -foregroundcolor black

-backgroundcolor white;
$password = read-host -AsSecureString;

Figure 10-12 shows the results of executing the code.

Figure 10-12

You can, of course, abbreviate the names of the –foregroundcolor and –backgroundcolor parame-
ters as follows:

write-host “Enter your name: “ -NoNewLine -fo black
code w/screen:$name = read-host;
write-host “Enter your password: “ -NoNewLine -fo black
code last w/screen:$password = read-host -AsSecureString;

You may want to use the write-host cmdlet to display warning and informational messages in particu-
lar color combinations. The following code, WriteHostColorTest.ps1, displays a warning in red text
on white and information in black text on white.

$LongEnough = $false
while(!$LongEnough)
{
$name = read-host “Enter your name “;
$password = read-host “Enter your password “ -SecureString;
If ($password.length -ge 8)
{
$LongEnough = $true
}
If ($LongEnough -eq $false)
{

216

Part I: Finding Your Way Around Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:05 PM Page 216

write-host “Your password is not long enough!!”-backgroundcolor
white -foregroundcolor red
write-host “Ensure your password is at least 8
characters.” -backgroundcolor white -foregroundcolor red
}
}

write-host “Your name is $name”
write-host “Your password is $password”
write-host “Thank you for providing your user credentials.”
GX:To run the code, type:

.\WriteHostColorTest.ps1

Figure 10-13 shows the results after once entering a password with six characters, then entering a pass-
word with the required eight characters.

Figure 10-13

The variable $LongEnough is set initially to False. A while loop tests whether or not the length prop-
erty of the $password variable is at least eight characters. If it is, then the value of $LongEnough is set to
True. If not, a warning is displayed (in red text on a white background) and the user is prompted to reen-
ter the user name and password. The following write-host statement specifies the red text on white:

write-host “Your password is not long enough!!”-backgroundcolor
white -foregroundcolor red
write-host “Ensure your password is at least 8
characters.”-backgroundcolor white -foregroundcolor red

Once a password of the specified length has been entered, the while loop exits and an informational
message, specified in the following code, is displayed in black text on white:

write-host “Thank you for providing your user credentials.”
Heading 1:Windows PowerShell Operators

In this section, I am going to take a look at the range of operators that Windows PowerShell supports.
The behavior and syntax of many operators is likely to be familiar to you. Windows PowerShell sup-
ports the following types of operators:

❑ Arithmetic — Use to calculate values

❑ Assignment — Use to assign one or more values to a variable

❑ Comparison — Use to compare values and perform conditional tests

217

Chapter 10: Scripting with Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:05 PM Page 217

❑ Logical — Use in statements containing more than one conditional test, to specify how those
tests are to be applied

❑ Unary — Use to increment or decrement variables or object properties

❑ Special — Use to, for example, run commands or specify a value’s datatype

I describe each of the operators later in this section and show you how they can be used.

The Arithmetic Operators
Windows PowerShell supports many arithmetic operators that are likely familiar to you from other lan-
guages. The supported operators are:

Operator Use

+ Addition

- Subtraction

* Multiplication

/ Division

% Remainder

Figure 10-14 shows very simple examples using each of the five arithmetic operators in the preceding
list. The result of each calculation is displayed on the screen following the use of each operator.

Figure 10-14

You can, of course, use the arithmetic operators to manipulate numeric values held as variables. The fol-
lowing example shows the addition of two variables. Type these commands:

$a = 10
$b = 5
$total = $a + $b
$total

Figure 10-15 shows the results. The final line causes the value of $total (15) to be displayed on the
console.

218

Part I: Finding Your Way Around Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:05 PM Page 218

Figure 10-15

To view the help file about the arithmetic operators, type the following command at the prompt:

help about_arithmetic_operator

Operator Precedence
When evaluating arithmetic operators, Windows PowerShell evaluates expressions based on the follow-
ing order of precedence:

1. - (indicating a negative number)

2. *, /, and %

3. +, - (indicating subtraction)

For example,

6 + 4 / 2

is the same as

6 + (4 / 2)

since the / operator has the higher precedence and is evaluated first.

Figure 10-16 shows simple examples that demonstrate some of the operator precedence just listed.
Notice that

10 + -2 / 4

is equivalent to

10 + (-2 / 4)

since the / operator has greater precedence than the + operator.

Figure 10-16

219

Chapter 10: Scripting with Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:05 PM Page 219

To view the help file about operator precedence, type the following command at the prompt:

help about_arithmetic_operators

The Assignment Operators
Windows PowerShell supports several assignment operators, which are summarized in the following
table.

Operator Meaning

= Assigns a value to a variable

+= Adds the value of the right side of the assignment to the existing value of the
left side and assigns the result to the variable on the left side.

-= Subtracts the value of the right side of the assignment from the existing value
of the left side and assigns the result to the variable on the left side.

*= Multiplies the value of the right side of the assignment and the existing value
of the left side and assigns the result to the variable on the left side.

/= Divides the value of the left side of the assignment into the existing value of
the right side and assigns the result to the variable on the left side.

%= Divides the value of the left side of the assignment into the existing value of
the right side and assigns the remainder to the variable on the left side.

The simplest assignment operator in the Windows PowerShell language is the = sign. The command

$a = 5

assigns the numeric value 5 to the variable $a.

To add 3 to $a and assign the result to $a, type this command:

$a += 3

It is equivalent to:

$a = $a + 3

To subtract 4 from $a and assign the result to $a, type this command:

$a -= 4

It is equivalent to:

$a = $a - 4

220

Part I: Finding Your Way Around Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:05 PM Page 220

To multiply $a by 5 and assign the result to $a, type this command:

$a *= 5

It is equivalent to:

$a = $a * 5

To divide $a by 4 and assign the result to $a, type this command:

$a /= 4

To find the remainder from dividing $a by 2 and assign the remainder to $a, type this command:

$a %= 2

Figure 10-17 shows the results of entering the previous commands, then displaying the current value of
the variable $a.

Figure 10-17

The preceding assignment operators are used with numeric values. However, you can also use assign-
ment operators, where appropriate, with string values. For example, to assign the string value Hello to
the variable $myString, type this command:

$myString = “Hello”

When assigning string values, use paired quotation marks or paired apostrophes to enclose the string
value.

You can assign multiple values to multiple variables in a single assignment statement. The following
statement assigns 1 to $a, 2 to $b and 3 to $c. The resulting values are displayed in Figure 10-18.

$a, $b, $c = 1, 2, 3

221

Chapter 10: Scripting with Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:05 PM Page 221

Figure 10-18

The assignment operator, =, can also be used to assign multiple values to a numeric array or a string
array. I discuss arrays in more detail in Chapter 11. For example, the following command:

$myNumericArray = 1, 2, 3, 4

creates an array containing four elements each containing a numeric value. Similarly, the following
command:

$myStringArray = “once”, “twice”, “thrice”, “and more”

creates an array with four elements each of which contains a string value. Figure 10-19 shows the results.

Figure 10-19

You can also use the = assignment operator to assign values to an associative array. An associative array is
a data structure for storing collections of keys and values. Associative arrays are discussed in Chapter 11.

To view the help file about the assignment operators, type the following command at the prompt:

help about_assignment_operator

The Comparison Operators
Windows PowerShell supports several comparison operators. A comparison evaluates a conditional
expression to the values of either $true or $false. Comparison operators enable you to perform some
test (one variable greater than or equal to another, for example) and to use the result to determine
whether or not a particular statement block is to be executed. I describe that use of comparison operators
in more detail in Chapter 11.

222

Part I: Finding Your Way Around Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:05 PM Page 222

Several operators are available to compare numeric and string values. When used to perform compar-
isons on string values the comparison using the operators in the following table is case-insensitive.

Operator Description

-eq Tests for equality.

-ne Tests for inequality.

-gt Tests whether the value on the left is greater than the value on the right.

-ge Tests whether the value on the left is greater than or equal to the value on the
right.

-lt Tests whether the value on the left is less than the value on the right.

-le Tests whether the value on the left is less than or equal to the value on the
right.

-like Tests, using wildcards, whether two values match. The wildcard(s) go on the
right side.

-notlike Tests, using wildcards, whether two values fail to match. The wildcard(s) go
on the right side.

-match Tests, using regular expressions, whether two values match. The regular
expression goes on the right side.

-notmatch Tests, using regular expressions, whether two values fail to match. The regular
expression goes on the right side.

The following operators are constructed by adding a “c” to the operator name. Each test is case-sensitive.

Operator Description

-ceq Tests for case-sensitive equality.

-cne Tests for case-sensitive inequality.

-cgt Tests whether the value on the left is greater than the value on the right. Case-
sensitive comparison.

-cge Tests whether the value on the left is greater than or equal to the value on the
right. Case-sensitive comparison.

-clt Tests whether the value on the left is less than the value on the right. Case-
sensitive comparison.

-cle Tests whether the value on the left is less than or equal to the value on the
right. Case-sensitive comparison.

-clike Tests, using wildcards, whether two values match. The wildcard(s) go on the
right side. Case-sensitive comparison.

Table continued on following page

223

Chapter 10: Scripting with Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:05 PM Page 223

Operator Description

-cnotlike Tests, using wildcards, whether two values fail to match. The wildcard(s) go
on the right side. Case-sensitive comparison.

-cmatch Tests, using regular expressions, whether two values match. The regular
expression goes on the right side. Case-sensitive matching.

-cnotmatch Tests, using regular expressions, whether two values fail to match. The regular
expression goes on the right side. Case-sensitive matching.

Although the comparison operators such as eq and gt are used case-insensitively, Windows PowerShell
also provides explicitly case-insensitive comparison operators, which are described in the following
table.

Operator Description

-ieq Tests for case-insensitive equality.

-ine Tests for case-insensitive inequality.

-igt Tests whether the value on the left is greater than the value on the right. Case-
insensitive comparison.

-ige Tests whether the value on the left is greater than or equal to the value on the
right. Case-insensitive comparison.

-ilt Tests whether the value on the left is less than the value on the right. Case-
insensitive comparison.

-ile Tests whether the value on the left is less than or equal to the value on the
right. Case-insensitive comparison.

-ilike Tests, using wildcards, whether two values match. The wildcard(s) go on the
right side. Case-insensitive comparison.

-inotlike Tests, using wildcards, whether two values fail to match. The wildcard(s) go
on the right side. Case-insensitive comparison.

-imatch Tests, using regular expressions, whether two values match. The regular
expression goes on the right side. Case-insensitive matching.

-inotmatch Tests, using regular expressions, whether two values fail to match. The regu-
lar expression goes on the right side. Case-insensitive matching.

The -replace operator is described in Chapter 12.

To view the help file about the comparison operators, type the following command at the prompt:

help about_comparison_operator

224

Part I: Finding Your Way Around Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:05 PM Page 224

The Logical Operators
Windows PowerShell supports four logical operators, which are used to combine tests using the com-
parison operators described in the preceding section. They are described in the following table.

Operator Meaning

-and Is true if both comparisons are true and only then.

-or Is true if one or both comparisons is true.

-not Negation.

! Negation. Synonym for -not.

To test whether 3 is greater than 4, type this command:

(3 -gt 4)

Not surprisingly, it returns false. To test whether 5 is greater than or equal to 3, type this command:

(5 -ge 3)

This returns true.

Using the -and logical operator, you can test whether both comparisons are true with the following
command:

(3 -gt 4) -and (5 -ge 3)

This returns false since the first test returns false. Because it is then impossible for both comparisons
to be true, you know that the overall test is false. However, if you use the -or logical operator:

(3 -gt 4) -or (5 -ge 3)

the first test returns false and the right test returns true. Since only one part of the test needs to be true
for the overall test to succeed, when you use the –or operator the overall test returns true.

The results from these examples are shown in Figure 10-20.

Figure 10-20

225

Chapter 10: Scripting with Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:05 PM Page 225

To view the help file about the logical operators, type the following command at the prompt:

help about_logical_operator

The Unary Operators
Windows PowerShell supports the unary operators listing in the following table.

Operator Meaning

+ Signifies explicitly that a number is a positive number

- Signifies that a number is a negative number

++ Increments a value or variable

-- Decrements a value or variable

The decrement and increment operators work similarly to the equivalent operators in many other
languages.

To assign 5 to $a then increment it, type these commands:

$a = 5
$a++

The value of $a is now 6.

To assign 10 to $b and then decrement it, type these commands:

$b = 10
$b--

The results are shown in Figure 10-21.

Figure 10-21

In some settings, you need to be careful whether the increment or decrement operators come before or
after a variable name.

226

Part I: Finding Your Way Around Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:05 PM Page 226

Set $a to 10 using the following command:

$a = 10

then type the following command:

$b = $a++

That assigns the value of $a to $b and after that assignment has taken place, it then increments $a. As
you can see in Figure 10-22, the value of $b is 10 and the value of $a is 11.

Figure 10-22

However, if you assign the value 10 to $a, then type the following command:

$c = ++$a

the value of $a is incremented before the assignment. So, $a is 11 when the assignment takes place.
Therefore, as you can see in the lower part of Figure 10-22, the value of both $a and $c is 11.

Using the set-variable and Related Cmdlets
Windows PowerShell supports several cmdlets that allow you to assign a value to a variable or other-
wise manipulate variables. They are:

❑ set-variable

❑ new-variable

❑ get-variable

❑ clear-variable

❑ remove-variable

I describe each of these cmdlets in the following sections.

227

Chapter 10: Scripting with Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:05 PM Page 227

The set-variable Cmdlet
The set-variable cmdlet provides an alternative to the assignment operator described earlier in this
chapter, to allow you to assign a value or values to a variable. One use is to allow variable assignment in
a pipeline.

In addition to the common parameters, the set-variable cmdlet supports the following parameters:

❑ Name — Specifies the name of the variable being set. It is a positional parameter in position 1. A
value must be specified.

❑ Include — Specifies only those items upon which the cmdlet will act.

❑ Exclude — Specifies those items upon which the cmdlet will not act.

❑ Scope — The scope where the variable is to be created — which can be a named scope
(“global”, “local”, or “script”) or a number relative to the current scope (0 through the number
of scopes, where 0 is the current scope and 1 is its parent).

❑ Value — Specifies the value assigned to the variable.

❑ Description — Specifies a user-defined description of the variable.

❑ Option — Allowed values are None, ReadOnly, Constant, Private, AllScope.

❑ Force — Specifies that every effort be made to set the variable.

❑ Whatif — A boolean value that specifies that no action should be taken, but the user should be
shown what would have happened if the cmdlet had executed.

❑ Confirm — A boolean value that specifies that the user be asked to confirm the intended action
before it is carried out.

❑ Passthru — Specifies that the object(s) created are passed to the next step in the pipeline.

The following shows an example of using the set-variable cmdlet. Type the following command to
assign the value of 20 to $a:

set-variable -name a -value 20 |
format-list

The format-list statement displays nothing, as you can see in top lines shown in Figure 10-23. This is
because there is no -passthru parameter specified. If you add a -passthru parameter, as shown here:

set-variable -name a -value 20 -passthru -description “A demo variable” | format-
list

then information about the variable can be displayed using the format-list statement (shown in the
bottom portion of Figure 10-23).

228

Part I: Finding Your Way Around Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:05 PM Page 228

Figure 10-23

The new-variable Cmdlet
The new-variable cmdlet creates a new variable.

In addition to the common parameters, the new-variable cmdlet supports the following parameters:

❑ Name — Specifies the name of the variable to be created. A positional parameter in position 1.

❑ Value — Specifies a value for the variable. A positional parameter in position 2.

❑ Description — Specifies a description for the variable.

❑ Option — Specifies options relating to the variable. Permitted values are None, ReadOnly,
Constant, Private, AllScope.

❑ Force — Specifies that every effort will be made to create the variable.

❑ Passthru — Specifies that the object(s) created are passed to the next step in a pipeline.

❑ Scope — Specifies the scope of the variable.

❑ Whatif — A boolean value that specifies that no action is taken but the user is shown what
would have happened if the cmdlet had executed.

❑ Confirm — A boolean value that specifies that the user is asked to confirm the intended action
before it is carried out.

The New-Variable cmdlet does not take include or exclude parameters, unlike the set-variable
cmdlet, which supports those parameters.

The following command creates a new variable —$myNewVariable— but does not assign a value to it.
Since the passthru parameter is present, the format-list statement allows you to see, in Figure 10-24,
that the variable exists but has no value set.

new-variable -name myNewVariable -passthru |
format-list

229

Chapter 10: Scripting with Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:05 PM Page 229

Figure 10-24

The get-variable Cmdlet
The get-variable cmdlet allows you to retrieve a Windows PowerShell variable. The get-variable
cmdlet supports the following parameters in addition to the common parameters:

❑ Name — Specifies the name of the variable(s). Accepts wildcard characters.

❑ ValueOnly — A boolean value. If present, then only the value of the variable (not the object) is
passed along the pipeline.

❑ Include — If present, specifies which variables to include. Qualifies the value of the –name
parameter.

❑ Exclude — If present, specifies which variables to exclude. Qualifies the value of the –name
parameter.

❑ Scope — Specifies the scope of the variable(s).

The following example shows the creation of four variables, $a1, $a2, $a3, and $a4. The get-variable
cmdlet is used to retrieve and display information about the variables $a1, $a2, and $a4.

Type these commands to create the variables:

$a1 = 10
$a2 = 20
$a3 = 30
$a4 = 40

Type this command to retrieve the previously mentioned variables:

get-variable -name a* -include a[124] |
format-list

As you can see in Figure 10-25, information on the three desired variables is displayed. The value of the
–include parameter is a regular expression pattern. The character class [124] matches a single charac-
ter, which is contained in the class. Thus the variables $a1, $a2, and $a4 match, but $a3 does not match,
since 3 isn’t contained in the character class.

230

Part I: Finding Your Way Around Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:05 PM Page 230

Figure 10-25

Notice that the variables are not, by default, ordered by name. If you wanted to sort them by name, you
would need to add a pipeline step, using the sort-object cmdlet.

get-variable -name a* -include a[124] |
sort-object Name |
format-list

The clear-variable Cmdlet
The clear-variable cmdlet clears the value(s) of one or more variables.

In addition to the common parameters, the clear-variable cmdlet supports the following parameters:

❑ Name — The name of the variable(s) whose value(s) are to be cleared

❑ Include — A filter that includes a subset of the name(s) specified by the Name parameter

❑ Exclude — A filter that excludes a subset of the name(s) specified by the Name parameter

❑ Force — Specifies that every effort will be made to create the variable

❑ Scope — Specifies the scope of the variable(s)

❑ Whatif — A boolean value that specifies that no action should be taken but the user should be
shown what would have happened if the cmdlet had executed

❑ Confirm — A boolean value that specifies that the user be asked to confirm the intended action
before it is carried out

The following example demonstrates clearing the value of specified variables. You will clear the values
of the $a1, $a2, $a3, and $a4 variables created in the preceding section. First, show that the four vari-
ables exist and have a value set using this command:

get-variable -name a* -include a[1234] |
format-list name, value

231

Chapter 10: Scripting with Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:05 PM Page 231

Next clear the value of three of those variables using this command. The value of $a3 is not cleared.

clear-variable -name a* -include a[124]

Then check to see that the values of those variables have been cleared using this command:

get-variable -name a* -include a[1234] | format-list name, value

Figure 10-26 shows the results. As you can see, the value of each of the three variables has been cleared.

Figure 10-26

The remove-variable Cmdlet
The remove-variable cmdlet removes one or more existing variables.

The remove-variable cmdlet supports the following parameters in addition to the common parameters:

❑ Name — The name of the variable(s) to be removed

❑ Include — Specifies a subset of the variables specified by the value of the Name parameter that
are to be removed

❑ Exclude — Specifies a subset of the variables specified by the value of the Name parameter that
are not to be removed

❑ Force — Specifies that every effort is to be made to remove variables

232

Part I: Finding Your Way Around Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:05 PM Page 232

❑ Scope — Specifies the scope of the variable(s)

❑ Whatif — A boolean value that specifies that no action should be taken but the user is to be
shown what would have happened if the cmdlet had executed

❑ Confirm — A boolean value that specifies that the user be asked to confirm the intended action
before it is carried out

In the following example, you delete the variables $a1, $a2, and $a3. Should you be unsure of the effect
of using a remove-variable command, you can use the whatif parameter. As in the preceding section,
I use four variables, $a1, $a2, $a3, and $a4, for the example. To explore removing the three desired vari-
ables with the protection of the whatif parameter, type this command:

remove-variable -name -include a[123] -whatif

As you can see in Figure 10-27 there are three variables that would have been removed if the whatif
parameter hadn’t been used. Since those are the variables you desire to delete, remove the whatif
parameter from the command:

remove-variable -name -include a[123]

Without further warning, the variables are removed, as you can confirm by typing:

get-variable -name a* -include a[1-4]

When you execute the following command, you can confirm that only $a4 still exists, as shown in
Figure 10-27.

Figure 10-27

233

Chapter 10: Scripting with Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:05 PM Page 233

Summary
The default install of Windows PowerShell prevents you executing PowerShell scripts and configuration
files on PowerShell startup. The get-executionpolicy cmdlet allows you to find out the current set-
ting of the Windows PowerShell execution policy.

To modify the current execution policy, you can use the set-executionpolicy cmdlet, if you have
administrator privileges. I showed you alternative techniques using Regedit or editing the registry from
the Windows PowerShell command line.

The read-host cmdlet allows you to accept user input. The write-host cmdlet allows you to cus-
tomize the display of information in the PowerShell console.

I described the following types of operators that Windows PowerShell supports:

❑ Arithmetic — Use to calculate values

❑ Assignment — Use to assign one or more values to a variable

❑ Comparison — Use to compare values and perform conditional tests

❑ Logical — Use in statements containing more than one conditional test, to specify how those
tests are to be applied

❑ Unary — Use to increment or decrement variables or object properties

❑ Special — Use to, for example, run commands or specify a value’s datatype

I introduced the following cmdlets that you can use to work with PowerShell variables:

❑ set-variable

❑ new-variable

❑ get-variable

❑ clear-variable

❑ remove-variable

Chapter 11 introduces several more features of the Windows PowerShell language.

234

Part I: Finding Your Way Around Windows PowerShell

14_946939 ch10.qxp 3/15/07 7:05 PM Page 234

Additional Windows
PowerShell Language

Constructs

In this chapter, I continue describing Windows PowerShell language constructs that are available
to you for use in Windows PowerShell scripts. I cover the following topics:

❑ Arrays

❑ Associative arrays

❑ Conditional expressions

❑ Looping constructs

❑ The add-member cmdlet

Arrays
An array is a collection of data elements. In Windows PowerShell, an array can contain elements of
any type supported by the .NET Framework. Array elements in the Windows PowerShell language are
numbered from zero. The first element in the array is element 0, the second is element 1, and so on.

To create an array, assign multiple values to a variable. To create a simple array named $myArray
containing three elements, type the following command:

$myArray = 1, 2, 3

15_946939 ch11.qxp 3/15/07 7:05 PM Page 235

You can display all elements in the array simply by typing

$myArray

at the Windows PowerShell prompt. If you want to display a selected element of the array, supply the
number of the element in square brackets. For example, to display the first element of the $myArray
variable, just type:

$myArray[0]

Figure 11-1 shows the execution of the preceding commands.

Figure 11-1

The names of arrays are case-insensitive, so typing:

$myarray

or:

$myArray

or any other variant of case will all display the values of the same array.

As I mentioned earlier, in Windows PowerShell, an array can contain various .NET types in individual
elements of an array. To create an array with three .NET types, type the following at the command
prompt:

$mixedArray = 1, “Hello”, 2.55

To display the elements in the array, type:

$mixedArray

You can find the methods available on $mixedArray and on each of its elements by using the get-
member cmdlet. The following command shows the methods available on the array:

$mixedArray | get-member

The members of some elements of the array, which is an array of objects, are shown in Figure 11-2.
Notice that the members of the first element, $mixedArray[0], which is a System.Int32 value, are dif-
ferent from those of the second element, $mixedArray[1], which is a System.String.

236

Part I: Finding Your Way Around Windows PowerShell

15_946939 ch11.qxp 3/15/07 7:05 PM Page 236

Figure 11-2

The GetType() method is available on the array and on each of its members. You can use the
GetType() method on the array to see its type. To see the type of the $mixedArray array, type:

$mixedArray.GetType()

As you can see in Figure 11-3, the array contained in the variable $mixedArray is an array of objects, as
indicated by the value of the Name property of a System.Runtime object. That explains why an array
can hold values which are strings, integers, and so on.

Figure 11-3

237

Chapter 11: Additional Windows PowerShell Language Constructs

15_946939 ch11.qxp 3/15/07 7:05 PM Page 237

You can display the type of each element of the array by using the following individual commands:

$mixedArray[0].GetType()
$mixedArray[1].GetType()
$mixedArray[2].GetType()

with results also shown in Figure 11-3.

However, that approach is tedious even in small arrays. The PowerShell language has a construct, the
foreach statement (that I describe in more detail later in this chapter), that allows you to iterate over
each element of an array. To view type information on each element of the array, use this command:

foreach ($i in $mixedArray)
{
$i.GetType()
}

You can type the command over several lines, as in the preceding code, which aids clarity or type it on a
single line as shown in the lower part of Figure 11-3. The foreach statement executes the code in the
paired curly braces for each element in the array.

It’s not immediately obvious that the type “String” is in the System namespace and is a System
.String. To see the fully qualified name of a type use the write-host cmdlet inside the curly braces.
If you type the following you can see the fully qualified type of each element in the array. The results
are shown in the final part of Figure 11-3.

foreach($i in $mixedArray)
{
write-host $i.GetType()
}

The foreach statement, described later in this chapter, iterates through each element of the
$mixedArray array and uses the write-host cmdlet to write the value returned by the GetType()
method for each element of the array.

When creating an array, you can use the range operator to populate multiple elements in the array with
successive values. For example, to assign the integers 8 to 12 to an array referenced by the $useRange
array, type this command:

$useRange = 8..12

Alternatively, you can write it as:

$useRange = (8 .. 12)

You can display the values in the elements of the $useRange array, using the following command:

$useRange

The range operator, .., can only be used with integer values. You cannot, for example, use the range
operator to populate an array with successive characters, as shown in Figure 11-4.

238

Part I: Finding Your Way Around Windows PowerShell

15_946939 ch11.qxp 3/15/07 7:05 PM Page 238

Figure 11-4

The two commands:

$myArray | get-member

and:

get-member –inputObject $myArray

do not display the same results. The first command displays the members of array elements in
$myArray. The second command displays the member of the array itself.

Creating Typed Arrays
The arrays you have created so far are arrays of .NET objects. As you saw when you created
$mixedArray, you can use several .NET types in a single array. PowerShell provides syntax to allow to
you strictly type an array so that all elements must be of a specified .NET type.

To specify that an array consists of values that are of type System.Int32, use the following command:

[System.Int32[]]$integerArray = (1, 11, 99, 235)

Display the values in a typed array simply by typing the array name, as before:

$integerArray

Figure 11-5 shows the results.

Figure 11-5

239

Chapter 11: Additional Windows PowerShell Language Constructs

15_946939 ch11.qxp 3/15/07 7:05 PM Page 239

If you attempt to include a value that is not of the specified type, an error message is displayed, as
shown in Figure 11-5.

[System.Int32[]]$integerArray = (1, 11, 99, 235, “Wednesday”)

However, in some situations, PowerShell will automatically cast a value to the type specified for the
array. For example, if you create an array of strings using the following command

[System.String[]]$stringArray = (“Hello”, “world”, “it’s”, “Wednesday”, 55)

the final value is an integer, as written inside the parentheses. However, since 55 can be cast to a string,
PowerShell treats the value as a string, as you can see in Figure 11-6 by typing the following command.

$stringArray[4].GetType()

Figure 11-6

When creating a typed array, you can create elements of any desired .NET 2.0 type. The following com-
mand creates an array of System.ServiceProcess.ServiceController objects.

[System.ServiceProcess.ServiceController[]]$services = get-service

You can confirm that each element is of the desired type by typing either of the following commands:

$services[0].GetType()

or:

write-host $services[0].GetType()

Figure 11-7 shows the results of executing the preceding commands.

Figure 11-7

240

Part I: Finding Your Way Around Windows PowerShell

15_946939 ch11.qxp 3/15/07 7:05 PM Page 240

Modifying the Structure of Arrays
Windows PowerShell supports several ways of modifying the structure of an existing array, which I
demonstrate in the following examples.

To set the value of an array element to null, simply assign the $null variable (the Windows PowerShell
way of expressing a null value) to the array element you want to change(s). You can see an example of
this in the following command, which sets the value of the third element in an array to null.

$myArray[2] = $null

Notice in Figure 11-8 that when you display all elements of the array, nothing is displayed for the third
element of the array. However the array element is still there. You can demonstrate that using this
command:

$myArray.length

The Length property of $myArray reflects the length of the array (the number of elements it has) and
remains three.

Figure 11-8

Setting the value of an element of an array to $null is not the same as deleting the array element, since
the array element still exists. You can still specify a value for an array element that you set to $null. For
example, you can supply a value to $myArray[2] by using the following command:

$myArray[2] = 99

Since the $myArray array is untyped you can supply a value of a different type than the value you origi-
nally removed. The following command sets the value of $myArray[2] to a string:

$myArray[2] = “Hello world!”

You can alter the value of any element in an array using an assignment statement. For example, you can
alter the value of the second element of the $myArray array using this statement:

$myArray[1] = “I contain a string now.”

241

Chapter 11: Additional Windows PowerShell Language Constructs

15_946939 ch11.qxp 3/15/07 7:05 PM Page 241

Notice in Figure 11-9 that the value of the second element in the array has been changed. It is possible, as
in this example, to replace an integer value for an element with a string value, since the array is an object
array. If the array was typed, you could not change an Int32 element to such a string.

Figure 11-9

You cannot directly remove an element from an array. The length of the array is fixed when the array is
created, and you cannot reduce it directly. However, you can add additional elements to an array, as
shown in Figure 11-10.

Figure 11-10

Either of the following commands adds an element to an array:

$anotherArray = $anotherArray + 10

or:

$anotherArray += 99

If you want to shorten an array, you can create a new array with a subset of the elements of an existing
array. For example, to trim the last element from an existing array, $myArray, you can use this command:

$shorterArray = $myArray[0..($myArray.length-2)]

242

Part I: Finding Your Way Around Windows PowerShell

15_946939 ch11.qxp 3/15/07 7:05 PM Page 242

Remember that arrays are numbered from zero, so $myArray.length-2 is the index of the second to
last element in the $myArray array. The paired parentheses are essential when you use the range opera-
tor. Figure 11-11 shows this truncating a six-element array to a five-element array.

Figure 11-11

You can remove one or more elements from the middle of an existing array. For example, to remove the
third element of the $myArray array use this command:

$myArray2 = $myArray[0,1 + 3..($myArray.length-1)]

The above command specifies that you use elements 0 and 1 followed by the range from element 3 to the
end of the existing array. Notice that you must use a plus sign between the comma-separated list of ele-
ment numbers and the range of elements that follows. Figure 11-12 shows the results of executing the
preceding command.

Figure 11-12

If you attempt to use syntax like this:

$myArray2 = $myArray[0,1,3..($myArray.length-1)]

you will get an error message:

Cannot convert “System.Object[]” to “System.Int32”.
At line:1 char:31
+ $myArray2 = $myArray[0, 1, 3..(<<<< $myArray.length-1)]

as shown in the lower part of Figure 11-12.

243

Chapter 11: Additional Windows PowerShell Language Constructs

15_946939 ch11.qxp 3/15/07 7:05 PM Page 243

You can delete an array using the remove-item cmdlet. For example, to delete the $myArray variable,
type either of the following commands:

remove-item variable:myArray

or:

remove-item $myArray

Figure 11-13 shows the removal of the $myArray array. The former command treats the $myArray vari-
able as a child item of the variable: drive.

Figure 11-13

Be careful not to include the $ sign as part of the variable name in a remove-item statement when
explicitly using the variable: drive, since the $ sign is not part of the variable’s name. For example,
typing

remove-item variable:$myArray2

causes Windows PowerShell to attempt to remove a variable corresponding to the values of the elements
in the $myArray2 array, and the error message is displayed as shown in Figure 11-14, which is very
likely not what you intended.

Remove-Item : Cannot find path ‘Variable:\1 2 4 5 6’ because it does not exist.
At line:1 char:12
+ remove-item <<<< variable:$myArray2

Figure 11-14

244

Part I: Finding Your Way Around Windows PowerShell

15_946939 ch11.qxp 3/15/07 7:05 PM Page 244

Working from the End of Arrays
Elements in Windows PowerShell arrays are numbered starting from zero. Suppose that you want to
find the last four elements in an array. If you know the length of the array, say 7, you can write a com-
mand like this:

$myArray[($myArray.Length – 5) .. ($myArray.Length - 1)]

The command makes use of the Length property of the array. It works, as you can see in Figure 11-15,
but it’s a bit verbose and you need to keep in mind that array elements are numbered from zero, so you
use $myArray.Length – 1 to refer to the last element.

Figure 11-15

You can also change or display elements of an array starting from the last element by using negative
integers as the identifier of the elements. For example, you can display the last value in an array by
typing:

$myArray[-1]

To display the second last element of an array, type:

$myArray[-2]

You can display several values at the end of an array using the range operator. For example, to display
the last three elements of an array with the last element displayed, first type:

$myArray[-1..-3]

If you want to display the last three elements in an array but with the third-last element displayed first,
then the second-last, and so on, type this:

$myArray[-3..-1]

Figure 11-16 shows the preceding four commands used with an example array.

245

Chapter 11: Additional Windows PowerShell Language Constructs

15_946939 ch11.qxp 3/15/07 7:05 PM Page 245

Figure 11-16

You need to be careful when attempting to mix positive and negative numbers as indices for elements.
For example, if you wanted to display all but the first two elements of an array (that is, displaying the
third through the last element of the array), you might type:

$myArray [2 .. -1]

But you don’t get the desired result. The statement tells Windows PowerShell to display the third ele-
ment, $myArray[2]. The range is 2 .. -1 (in other words 2, 1, 0, -1), which means that Windows
PowerShell next displays $myArray[1], an element that you didn’t want to display, then element
$myArray[0], another element that you didn’t want to display, and finally $myArray[-1], the last ele-
ment in the array. Figure 11-17 shows the result.

Figure 11-17

You can get the desired elements (all but the first two elements of the array) using:

$myArray[-($myArray.length-2)..-1]

Be careful with the $myArray.length-2 part of the expression. The positively numbered array indexes
start at zero but the negatively numbered array indexes start at –1. The desired result (all but the first
two elements of the array) is shown in the lower part of Figure 11-17.

Using negative numbers for array elements lets you find elements counting from the end. There is another
approach to do the same thing using the select-object element and its –last parameter. For example,
the following command finds the last five elements of an array $myArray, as shown in Figure 11-18:

$myArray |
select-object –Last 5

246

Part I: Finding Your Way Around Windows PowerShell

15_946939 ch11.qxp 3/15/07 7:05 PM Page 246

Figure 11-18

The first step in the pipeline supplies objects representing each element of the array to the second step of
the pipeline. The select-object cmdlet finds the last five objects passed to it, as specified by the value
of its –last parameter.

You can adapt the preceding technique to find, for example, the five largest elements in an array. Simply
add a step to the pipeline using the sort-object cmdlet to sort the objects:

$myArray |
sort-object |
select-object -last 5

Figure 11-19 shows the five largest values in the array displayed.

Figure 11-19

This technique, in turn, hints at how you can sort the values in an existing array. The following com-
mand sorts the values in $myArray and assigns those sorted values to a new array $sortedArray:

$sortedArray = ($myArray | sort-object)

The results are shown in Figure 11-20. It’s important that you enclose the right-hand side in paired
parentheses to achieve the sorted list of values.

Figure 11-20

247

Chapter 11: Additional Windows PowerShell Language Constructs

15_946939 ch11.qxp 3/15/07 7:05 PM Page 247

Concatenating Arrays
PowerShell allows you to combine two arrays into a single array by concatenating the elements of the
two arrays. To concatenate two arrays, you use the + operator with two existing arrays as the operands.

For example, suppose that you have already created two arrays, $a and $b. You concatenate them to cre-
ate an array $c by typing:

$c = $a + $b

If $a is the array (1, 2, 3) and $b is the array (4, 5, 6), then $c is the array (1, 2, 3, 4, 5, 6).

Of course, you can concatenate them in the opposite order (with the elements of $b preceding the ele-
ments of $c), using this command

$c = $b + $a

as shown in Figure 11-21. $c is now the array (4, 5, 6, 1, 2, 3). The elements that come from $b precede
the elements that come from $a.

Figure 11-21

You can use the index of selected elements of each array to concatenate selected elements of two arrays.
For example, to concatenate the first two elements of $a and the first two elements of $b, type

$d = $a[0,1] + $b[0,1]

as shown in Figure 11-22. $d is the array (1, 2, 4, 5).

Figure 11-22

248

Part I: Finding Your Way Around Windows PowerShell

15_946939 ch11.qxp 3/15/07 7:05 PM Page 248

Associative Arrays
An associative array is a data structure intended to store paired keys and values. An associative array
can be visualized as a two-column table, with one column holding the key and the other column holding
the corresponding value in the same row. An associative array is used to store two related pieces of
information. In Windows PowerShell an associative array is stored as a hash table (a System
.Collections.HashTable object) in order to achieve good performance.

The expression which defines the key-value pairs in an associative array begins with an @ sign and is
contained between paired curly brackets. The assignment operator, =, associates a key with a value. Key-
value pairs are separated by a semicolon. The following statement creates an associative array where the
key is a name and the value is a date of birth:

$myAssocArray = @{“John Smith” = “1975/12/24”; “Alice Knowles” = “1981/03/31”}

As with standard arrays, to display the content of the associative array, you can simply type the name of
the associative array:

$myAssocArray

Figure 11-23 shows the creation and display of the preceding associative array. As you can see in the fig-
ure, the each key-value pair is displayed on its own row.

Figure 11-23

Windows PowerShell is flexible over the delimiters for both the key and value — you can use single or
double quotation marks to delimit the key or value. If the key or value contains a space character, as
shown in Figure 11-19, you must enclose the key or value in delimiters. Windows PowerShell uses the
semicolon to separate key-value pairs. If you attempt to use a comma as separator between key-value
pairs, an error message is displayed.

To selectively display the value part of a selected key-value pair, you can use an object-based notation or
an array-based notation. For example, to display the value for the key John Smith, type any of the fol-
lowing commands:

$myAssocArray2.”John Smith”
$myAssocArray2.’John Smith’
$myAssocArray2[‘John Smith’]

Figure 11-24 shows the desired value displayed.

249

Chapter 11: Additional Windows PowerShell Language Constructs

15_946939 ch11.qxp 3/15/07 7:05 PM Page 249

Figure 11-24

The value part of a key-value pair can be an expression. So, if you want to store a value that might be
treated as an expression, for example a U.S. telephone number with area codes, you would put the value
in delimiters. Otherwise, Windows PowerShell would treat the value as an expression whose value must
be calculated. For example, create an associative array to contain phone numbers as follows:

$ExpressionArray = @{“John Smith” = 123-245-8778;
“Alice Steer”=(123)-533-2382; “Hans Allers” = “123-345-3457”}

Since you did not delimit the value of each key-value pair, Windows PowerShell treated the expression
as a calculation, as you can demonstrate by typing:

$ExpressionArray

Figure 11-25 shows the result. To avoid this, just enclose the telephone number in delimiters, as you can
see for the phone number for Hans Allers.

Figure 11-25

You can demonstrate that Windows PowerShell is treating the expression for John Smith’s phone num-
ber as an int32, while the value for Hans Allers is set to a string, as you can see by using the following
commands:

$ExpressionArray[“John Smith”]
$ExpressionArray[“Hans Allers”]

Conditional Expressions
Any script code beyond the most basic requires the ability to do one thing if a certain condition is speci-
fied and to do something else if the condition is not satisfied. An expression that allows such decisions to
be made is called a conditional expression.

250

Part I: Finding Your Way Around Windows PowerShell

15_946939 ch11.qxp 3/15/07 7:05 PM Page 250

Windows PowerShell supports two conditional expressions:

❑ The if statement with its variants that include an else clause

❑ The switch statement

The if Statement
The simplest form of the if statement allows you to evaluate an expression, and depending on the result
of the evaluation, to optionally execute a block of Windows PowerShell code.

The following script, contained in the file ifExample.ps1, demonstrates simple usage of a single if
statement. The script is available for downloading from this book’s web site.

write-host “This example shows a simple if statement in use.”
$a = read-host -prompt “Enter a number between 1 and 10”
if ($a -lt 3)
{write-host ‘$a’” is less than 3”}

The read-host cmdlet accepts a number from the user. If the user enters a value less than 3, the test
part of the if statement:

if ($a -lt 3)

returns true. Therefore, the statement block (in this case a single statement) contained between the
paired curly brackets, that is:

{write-host ‘$a’” is less than 3”}

is executed and writes the message “ $a is less than 3” to the console. Should the test part of the if
statement evaluate to $false, then the statement block is not executed. In this simple example, no code
is executed if the value entered by the user is 3 or more. Figure 11-26 shows the result of running the
ifExample.ps1 script and entering a number less than 3 and a number greater than 3.

Figure 11-26

Sometimes you might want to do one thing if the test returns $true and something else if the test returns
$false. The simplest form to behave in that way uses an else clause, as in the following pseudocode:

If (test1)
{block 1}
else
{block 2}

251

Chapter 11: Additional Windows PowerShell Language Constructs

15_946939 ch11.qxp 3/15/07 7:05 PM Page 251

If test1 returns $true, then the code in block 1 is executed. If test1 returns $false, then the code in
block 2 is executed.

The following code, IfExample2.ps1, shows how you can use the if statement with an else clause.

write-host “This example shows a simple if statement with an else clause.”
$a = read-host -prompt “Enter a number between 1 and 10”
if ($a -lt 3)
{write-host ‘$a’” is less than 3”}
else
{write-host ‘$a’” is 3 or more”}

If the number that the user enters is less than three, the code in the first code block executes. If the num-
ber entered by the user is three or more, the code in the second code block executes. Figure 11-27 shows
the results after entering a value of 2 (which causes the first code block to execute) and a value or 6,
which causes the second code block to execute.

Figure 11-27

The elseif clause (of which there can be more than one) allows you to provide a statement block to be
executed if the test in the original if statement returns $false and a later test returns $true. You can
use multiple elseif clauses, as in the following pseudocode:

If (test1)
{block 1}
elseif (test2)
{block 2}
elseif (test3)
{block 3}
else
{block 4}

If test1 returns $true, then code block 1 executes. Code block 2 executes only if test1 returns $false
and test2 returns $true. Code block 3 executes only if test1 and test2 return $false and test3
returns $true. If test1, test2, and test3 all return $false, then code block 4 executes.

The following script, ifExample3.ps1, includes two elseif clauses that allow messages to be written
to the console for any valid value (between 1 and 10) entered by a user:

write-host “This example shows an if statement with elseif in use.”
$a = read-host -prompt “Enter a number between 1 and 10”
if ($a -lt 3)

252

Part I: Finding Your Way Around Windows PowerShell

15_946939 ch11.qxp 3/15/07 7:05 PM Page 252

{write-host ‘$a’” is less than 3”}
elseif ($a -le 5)
{write-host ‘$a’” is between 3 and 5 inclusive”}
elseif ($a -gt 5)
{write-host ‘$a’” is between 5 and 10 inclusive”}

If the value entered by the user is less than 3, the first if statement returns $true, so the first statement
block is executed:

if ($a -lt 3)
{write-host ‘$a’” is less than 3”}

However, if a number of 3 or more is entered, the first elseif clause is executed (since the first test
returned $false):

elseif ($a -le 5)

and its test is evaluated. If that test returns $true (in other words $a is less than or equal to 5), the corre-
sponding statement block:

{write-host ‘$a’” is between 3 and 5 inclusive”}

is executed. If, however, the test of that first elseif clause evaluates to false, then the second elseif
clause is executed and its test evaluated. If that returns $false, then no statement block is executed. If it
returns $true, then the statement block

{write-host ‘$a’” is between 5 and 10 inclusive”}

is executed. Figure 11-28 shows the result when the script is run three times with values that, respec-
tively, return $true for the if statement, the first elseif clause, and the second elseif clause.

Figure 11-28

You can nest if statements. The following example shows two if statements with the second nested
inside the first. The file is IfNested.ps1.

write-host “This example shows nested if statements.”
$a = read-host -prompt “Enter a number between 1 and 10”
if ($a -lt 3)
{write-host ‘$a’” is less than 3”;
if ($a -lt 5)
{

253

Chapter 11: Additional Windows PowerShell Language Constructs

15_946939 ch11.qxp 3/15/07 7:05 PM Page 253

write-host ‘$a’”is also less than 5”
}
}

Notice that the whole of the nested if statement is contained inside the opening curly brace and closing
curly brace of the first if statement. Figure 11-29 shows the result if a number less than 3 is entered. The
first test returns $true, so the code

{write-host ‘$a’” is less than 3”;

executes. The nested if statement is in the same code block, so it executes, too. The test ($a –lt 5)
returns true, so the code in the nested code block

write-host ‘$a’”is also less than 5”

also executes.

Figure 11-29

If the first test returns $false, none of the code (including the nested if statement) in the first code
block is executed.

The switch Statement
Often, you use the if statement described in the preceding section to test for a single result and then
execute code conditionally. For example, look at the number of open handles a process has and if this is
over some limit, then print out the process name). However, where you have large numbers of tests to
perform on a single variable, the Windows PowerShell switch statement helps you to handle the situa-
tion where multiple tests are to be applied.

The simplest form of the switch statement is similar to the code in SwitchExample1.ps1, shown here:

write-host “This is a very simple switch statement example.”
$a = read-host “Enter a number between 1 and 4”
switch ($a)
{
1 {write-host “You entered 1”}
2 {write-host “You entered 2”}
3 {write-host “You entered 3”}
4 {write-host “You entered 4”}
}

254

Part I: Finding Your Way Around Windows PowerShell

15_946939 ch11.qxp 3/15/07 7:05 PM Page 254

The value to be tested is expressed in parentheses:

switch ($a)

and a statement block in paired curly brackets follows. Inside the paired curly brackets are a series of
options against which the value of $a is tested. Each option has a corresponding statement block, which
is executed if the value matches the value of $a. Figure 11-30 shows the result of executing the script
multiple times, entering the values 1, 2, 3, 4, and 78. The first four values have a match inside the state-
ment block for the switch statement, so the relevant statement block containing a write-host cmdlet
statement is executed. When the value entered is 78 there is no match for the value of $a, so no state-
ment block is executed.

Figure 11-30

You can also provide a default option whose statement block is executed if no earlier option has been
matched. The code in SwitchExample2.ps1 provides a default option.

write-host “This is a very simple switch statement example.”
$a = read-host “Enter a number between 1 and 4”
switch ($a)
{
1 {write-host “You entered 1”}
2 {write-host “You entered 2”}
3 {write-host “You entered 3”}
4 {write-host “You entered 4”}
default {write-host “You didn’t enter a number between 1 and 4”}
}

Figure 11-31 shows the results when SwitchExample2.ps1 is run.

255

Chapter 11: Additional Windows PowerShell Language Constructs

15_946939 ch11.qxp 3/15/07 7:05 PM Page 255

Figure 11-31

Looping Constructs
Often in scripts, you want a piece of code to be executed multiple times. You might want it to be exe-
cuted a specified number of times while a particular condition is true or once for every item in a collec-
tion. Windows PowerShell supports looping constructs for each of those situations:

❑ for loop — Executes code a specified number of times

❑ while loop — Executes code while a specified condition is true

❑ foreach loop — Executes code for each item in a collection

Each of the preceding constructs is described in the following sections.

The for Loop
The for statement allows a statement block to be run multiple times, depending on a condition tested
before the statement block is run. Whether or not the statement block is executed depends on the result
of a conditional test. The for statement takes the following general form:

for (initialization ; test condition; action)
{
a block of statements can go here
}

The following script, ForExample.ps1, shows a simple example using the for statement:

for ($i = 0; $i -lt 10; $i++)
{
write-host “The value of “‘$i’” is $i”
}

The variable $i is initialized to 0. The test condition is evaluated. While the value of $i is less than 10, the
statement block is executed. Each time the statement block is executed, the value of $i is incremented.

256

Part I: Finding Your Way Around Windows PowerShell

15_946939 ch11.qxp 3/15/07 7:05 PM Page 256

The test condition is then evaluated again. If it evaluates to $true, then the statement block is executed
again. If it evaluates to $false, then the for loop is completed. Figure 11-32 shows the results when
ForExample.ps1 is run.

Figure 11-32

The for statement is very flexible, since the test condition and action can be quite complex. The condi-
tion can be any statement that evaluates to $true or $false. The action can be a simple increment, as in
the previous example, or can increase according to some other basis. The script ForExample2.ps1,
below, displays even numbers up to 20.

write-host “This example displays even numbers up to 20.”
for ($i = 0; $i -le 20; $i+=2)
{
write-host “The value of “‘$i’” is $i”
}

The action adds 2 to the value of $i each time the for statement is executed. The condition tests whether
the value of $i is less than or equal to 20. Figure 11-33 shows the result of executing the code.

Figure 11-33

You can also use an expression to initialize the for loop. The following example, ForExample3.ps1,
uses the Month property of a DateTime object to initialize $i. The remaining months in the year are dis-
played.

write-host “This example displays month numbers remaining in the year.”
for ($i = (get-date).month; $i -le 12; $i++)
{
write-host “The value of “‘$i’” is $i”
}

257

Chapter 11: Additional Windows PowerShell Language Constructs

15_946939 ch11.qxp 3/15/07 7:05 PM Page 257

Figure 11-34 shows the result of executing the preceding code when the current month is November.

Figure 11-34

The while Loop
The while statement is another looping construct in Windows PowerShell. A conditional test is applied
before the statement block executes. While the conditional test returns $true, the statement block exe-
cutes. It takes the following general form:

while (test condition)
{
Statement(s) to be executed
}

The script WhileExample.ps1 is shown here:

$i = 0
while ($i -lt 5)
{
write-host ‘$i’” is currently $i.”
$i++
}

The variable $i is first assigned a value. Then the while statement executes, and the test condition spec-
ified on the following line is evaluated.

while ($i -lt 5)

If the test condition evaluates to $true, the statements inside curly braces are executed.

The while statement itself does not provide a way to modify the value of the variable being tested
inside the test condition. You need to explicitly add a statement such as

$i++

inside the statement block to avoid endless looping.

Figure 11-35 shows the result of running the WhileExample.ps1 script.

258

Part I: Finding Your Way Around Windows PowerShell

15_946939 ch11.qxp 3/15/07 7:05 PM Page 258

Figure 11-35

If the test condition in a while statement evaluates to $false when the while loop is first executed, the
code in the statement block is never executed.

The do/while Loop
The do/while loop is similar to the while loop. However, the do/while loop is always executed at
least once, since the statement block is executed before the condition in the while statement is evalu-
ated. It takes the following general form:

do
{
Statement(s) to be executed
}
while (test condition)

The script DoWhileExample.ps1, below, shows how the do/while loop can be used:

$i = 0
do
{
write-host ‘$i’” is currently $i.”
$i++
}
while ($i -lt 5)

Figure 11-36 shows the results of executing the script DoWhileExample.ps1.

Figure 11-36

The do/while loop is always executed at least once, whatever the initial value of $i. In the following
example, DoWhileExample2.ps1, $i would return $false if tested before the do/while loop is exe-
cuted. However, the statement block runs once before the test is applied.

259

Chapter 11: Additional Windows PowerShell Language Constructs

15_946939 ch11.qxp 3/15/07 7:05 PM Page 259

$i = 100
do
{
write-host ‘$i’” is currently $i.”
$i++
}
while ($i -lt 5)

The result of executing the preceding code is shown in the lower part of Figure 11-36.

The foreach Statement
The foreach statement allows you to process all items in a collection in a specified way. The foreach
statement can, for example, be used to process all elements in an array when you don’t know how many
elements the array has.

The script ForeachExample.ps1 traverses the array $a and displays the value of each element in a sim-
ple message written to the console:

$a = “a”, “b”, “c”, “d”
foreach ($i in $a)
{
write-host “The value in the current element is $i”
}

Figure 11-37 shows the result of executing ForeachExample.ps1.

Figure 11-37

You can process a collection of objects so that one task is executed once before each object is processed,
each object is then processed in the same way, and then a final statement block is executed once. The fol-
lowing code, ForeachExample2.ps1, shows an example using the foreach-object cmdlet to count
the number of processes beginning with s.

You have to be careful how you type code like this. If you create a line that appears to PowerShell to
“complete” the command, then it won’t treat subsequent lines as part of the command.

get-process s* |
foreach-object -begin {
write-host “This is displayed in the beginning block.”
$processCount = 0
} -process {

$processCount++

260

Part I: Finding Your Way Around Windows PowerShell

15_946939 ch11.qxp 3/15/07 7:05 PM Page 260

} -end {
write-host “This is displayed in the end block.”
write-host “The number of processes is $processCount.”
}

The results are shown in Figure 11-38.

Figure 11-38

The value of the –begin parameter is a script block:

{
write-host “This is displayed in the beginning block.”
$processCount = 0
}

Its content is executed once.

The value of the –process parameter is a script block:

{

$processCount++
}

Its content is executed once for each object in the collection.

The value of the –end parameter is a script block:

{
write-host “This is displayed in the end block.”
write-host “The number of processes is $processCount.”
}

It is executed once after the collection has been processed.

You could write the code for this particular example much more simply as follows
(ForEachExample3.ps1). The preceding example is intended primarily to show you the technique.

write-host “This is displayed in the beginning block.”
$processCount = (get-process s*).count
write-host “This is displayed in the end block.”
write-host “The number of processes is $processCount.”

261

Chapter 11: Additional Windows PowerShell Language Constructs

15_946939 ch11.qxp 3/15/07 7:05 PM Page 261

Summary
I introduced you to how arrays are expressed and manipulated in Windows PowerShell. I also intro-
duced you to the associative array, a data structure that allows you to store collections of keys and corre-
sponding values.

I then introduced you to the conditional expressions supported in Windows PowerShell and showed
examples of how you can use them:

❑ The if statement

❑ The switch statement

Finally, I introduced you to the looping constructs supported in Windows PowerShell and showed you
examples of how you can use them:

❑ The while statement

❑ The for statement

❑ The foreach statement

262

Part I: Finding Your Way Around Windows PowerShell

15_946939 ch11.qxp 3/15/07 7:05 PM Page 262

Processing Text

Windows PowerShell is designed primarily to work with .NET objects, but it also has enormous
power and flexibility for the processing of text. In this chapter, I show you techniques that you can
use to process text using Windows PowerShell commands and scripts.

If you have worked through earlier chapters, you will be aware that Windows PowerShell cmdlets
emit objects and not strings. In that respect, Windows PowerShell cmdlets differ substantially from
traditional executables such as those which form part of the traditional cmd.exe command shell. If
you use Windows PowerShell cmdlets, you need to be able to process the objects those cmdlets
emit. However, from the Windows PowerShell command shell, you can also use traditional appli-
cations that emit strings. If you use those applications and utilities and need to process the strings
they emit, then the string manipulation capabilities of Windows PowerShell may be very useful.
Textual data arises from many other sources, and you will likely at some time want to manipulate
text using at least some of the techniques I show you in this chapter. If you commonly manipulate
text data, you will use these techniques regularly when you use PowerShell.

The .NET String Class
Windows PowerShell text processing is founded on the .NET System.string class. As soon as
you type in a string at the command line, you can access the methods and properties of the
System.String class. For example, you can find the type of a string using this command:

“Hello world!”.GetType()

You can also find the full name of the type using this command:

“Hello world!”.GetType().FullName

Figure 12-1 shows the results of both commands. As you can see, the full name of the type of a
string is System.String.

16_946939 ch12.qxp 3/15/07 7:06 PM Page 263

Figure 12-1

The result of the first command you typed uses Windows PowerShell’s default formatter to display the
result you see in Figure 12-1. If you had piped the output to the format-list cmdlet, you would get to
see much more information about the type, as shown in Figure 12-2. That figure shows the first of sev-
eral screens of information that tell you about the String type in the .NET 2.0 Framework. Notice that
the FullName property is one of the many pieces of further information you can access about the object.

Figure 12-2

You can use Windows PowerShell to list the members of the String class. Knowing the methods of the
System.String class allows you to explore what it is possible to do to the value of a string object.

To display the methods of the String class and page the results, use this code:

$Hello = “Hello world!”
$Hello |
get-member -memberType method |
More

The String class has multiple methods, which are listed in the following table. When you process
strings emitted from traditional applications, you will likely need to use several of the methods of the
String class. In the table I give the name of the method only. Typically, when using the method you
write its name followed by paired parentheses (which may or may not contain one or more arguments).
Thus, the GetType method is written with paired parentheses as follows:

“A string”.GetType()

264

Part I: Finding Your Way Around Windows PowerShell

16_946939 ch12.qxp 3/15/07 7:06 PM Page 264

For further information on details of some methods and on underlying .NET Framework concepts con-
sult the .NET Framework 2.0 SDK documentation.

Method Description

Clone Creates a copy of an existing string object.

Compare An overloaded static method that compares two strings.

CompareTo Allows you to compare one string object with another.

Contains Tests whether the value of one string object contains the value of another
string object.

CopyTo Specifies characters to be copied from a string to a destination character
array.

EndsWith Tests whether the value of the string ends with a specified string.

Equals Tests whether two string values are equal.

get_Chars Returns a set of characters contained in a string, starting at a specified
index.

get_Length Returns the length of a string.

GetEnumerator Enumerates individual characters in a string.

GetHashCode Returns the hash code for a string.

GetType Gets the type of the String object.

GetTypeCode Gets the type code of a String object.

IndexOf Returns the index of the first occurrence in a string of a specified character
or string.

IndexOfAny An overloaded method that returns the index of the first occurrence in the
object instance of any character in a specified character array.

Insert Inserts a string at a specified index in an existing string.

IsNormalized Overloaded method that tests whether a string is normalized.

LastIndexOf Finds the index in an existing string of the last occurrence of a specified
character or string.

LastIndexOfAny Finds the index in an existing string of the last occurrence of a character in
a specified character array.

Normalize An overloaded method that returns a new string object whose value is in a
specified Unicode normalization form.

PadLeft An overloaded method that pads the beginning of a string with a specified
character to a specified length.

PadRight An overloaded method that pads the end of a string with a specified char-
acter to a specified length.

Table continued on following page

265

Chapter 12: Processing Text

16_946939 ch12.qxp 3/15/07 7:06 PM Page 265

Method Description

Remove An overloaded method that removes characters from a string.

Replace Replaces a character with a specified character or replaces a string with a
specified string.

Split Splits a string into substrings. The character that defines where the string is
to be split is the argument to the method.

StartsWith Tests whether a string starts with the string that is the argument to the
method.

Substring Creates a substring from an existing string.

ToCharArray Copies the characters in a string to a character array.

ToLower Converts all characters in a string to lowercase.

ToLowerInvariant Converts all characters in a string to lowercase, using the casing rules of
the invariant culture.

ToString A method inherited from System.Object. Since an instance of
System.String is already a string, no conversion takes place.

ToUpper Converts all characters in a string to uppercase.

ToUpperInvariant Converts all characters in a string to uppercase, using the casing rules of
the invariant culture.

Trim Removes all occurrences of specified characters from the beginning and
end of a string.

TrimEnd Removes all occurrences of specified characters from the end of a string.

TrimStart Removes all occurrences of specified characters from the beginning of a
string.

I demonstrate the use of several of the String object’s methods in the following sections. Those I
describe and demonstrate in detail are those I anticipate will be the most useful to you in PowerShell
programming.

To retrieve the properties of the any variable or array, you can use the get-member, as illustrated here:

$Hello |
get-member -memberType property

The System.String class has a single property accessible in Windows PowerShell, named Length. The
value of the Length property is the number of characters in a string.

The String class also has a parameterized property called Chars, which is not exposed in Windows
PowerShell.

266

Part I: Finding Your Way Around Windows PowerShell

16_946939 ch12.qxp 3/15/07 7:06 PM Page 266

Working with String Methods
In this section and its subsections, I describe many of the methods of the .NET 2.0 Framework String
class. Strings in Windows PowerShell are System.String objects, as you saw in Figure 12-1. The meth-
ods of the System.String class give you great flexibility in manipulating strings in the PowerShell
environment. Typically, in real life you will use several of these methods in combination to process string
data in your scripts.

The Clone() Method
To create a copy of a string, you can use the Clone() method. The following example creates a string
and assigns it to the variable $a:

$a = “Hello world!”
$c = $a.Clone()
$a
$c
$a = “Goodbye world!”
$a
$c

The Clone() method is used to copy the object and the copy is assigned to $c. In the third and fourth
commands in the code, the value of the two strings is then shown to be the same. When you change the
value of $a, you can see that the value of $c does not change. Figure 12-3 shows the results of running
the preceding code.

Figure 12-3

In Windows PowerShell, instead of using the Clone() method you could assign one variable to the
other and see behavior like that shown in Figure 12-3, which you can demonstrate by running the fol-
lowing code:

$a = “Hello world!”
$c = $a
$a
$c
$a = “Goodbye world!”
$a
$c

267

Chapter 12: Processing Text

16_946939 ch12.qxp 3/15/07 7:06 PM Page 267

Using the Compare() Method
The Compare() method is an overloaded static method that allows you to compare two strings. A static
method is a method available on the System.String class, rather than on a System.String object.
That means that you cannot simply use the method by using the dot notation that you can use with, say,
the GetType() method. If you attempt to execute a command such as:

$a.Compare($b)

you will see the following error message.

Method invocation failed because [System.String] doesn’t contain a method named
‘Compare’.
At line:1 char:11
+ $a.Compare(<<<< $b)

That doesn’t mean that System.String doesn’t have a Compare() method. It means that the method is
only available on the System.String class, not on individual System.String instance objects.

The value returned by the Compare() method is an integer. A value of 0 indicates that the two strings
being compared are equal. If the value is negative, then the first string is less than the second string. If
the value is positive, then the first string is greater than the second string.

Since the Compare() method is a static method rather than a method of an individual string object, a
special syntax is used:

[System.String]::Compare(StringObject1, StringObject2)

You enclose the name of the class, System.String, in paired square brackets. The separator between
the class name and the method name is two colon characters. To compare two strings supply two literal
strings or references to two string variables.

The following commands allow you to assign strings to the two variables $a and $b and compare the
two string objects:

$a = “abc”
$b = “abcd”
[System.String]::Compare($a, $b)
$b = “ab”
[System.String]::Compare($a, $b)
$b = “abc”
[System.String]::Compare($a, $b)

Initially, $a is less than $b (abc is less than abcd) and that is reflected by the Compare() method return-
ing -1. After the value of $b is changed, the value of $a is greater than the value of $b (abc is greater
than ab); this is reflected in the return value of 1, which is greater than 0. Finally, the values of the two
strings are set to the same sequence of characters, and the Compare() method returns 0. Figure 12-4
shows the results of running the preceding commands.

268

Part I: Finding Your Way Around Windows PowerShell

16_946939 ch12.qxp 3/15/07 7:06 PM Page 268

Figure 12-4

In Windows PowerShell, you don’t need to use the Compare() method when you are comparing strings
in English. You can use one of the PowerShell comparison operators. The following code performs a
comparison similar to the first comparison in the previous block of code:

$a = “abc”
$b = “ab”
if ($a -gt $b){write-host ‘$a is greater than $b’}

You can use the Compare() method to compare two strings case-sensitively or case-insensitively. By
default, the overload with two arguments compares strings case-sensitively, as you can demonstrate by
running the following code:

$a = “abc”
$b = “ABC”
[System.String]::Compare($a, $b)

The command to carry out a specified case comparison takes the form:

[System.String]::(StringObject1, StringObject2, Boolean)

The boolean value specifies whether or not case is to be ignored when performing the comparison (the
default is $false). Setting the boolean value to $true causes Windows PowerShell to ignore case and to
make a case-insensitive comparison. The following commands create two strings that differ only in case.
First, they are compared case-insensitively and are shown to be equal, since the Compare() method
returns zero. When the boolean value is $false, the Compare() method indicates that the two strings
are not equal, since it is false to say it’s ignoring case. In other words, it is taking case into account and
making a case-sensitive comparison.

$a = “abc”
$b = “ABC”
[System.String]::Compare($a, $b, $true)
[System.String]::Compare($a, $b, $false)

Figure 12-5 shows the results of running the preceding commands.

269

Chapter 12: Processing Text

16_946939 ch12.qxp 3/15/07 7:06 PM Page 269

Figure 12-5

In PowerShell, you can carry out case-sensitive string comparisons using one of the case-sensitive com-
parison operators. For example, the code

$a = “abc”
$b = “ABC”
if ($a -eq $b){write-host ‘$a is equal to $b’}

displays output indicating that the strings are equal, since the comparison using the –eq operator in
PowerShell is case-insensitive by default. However, you can make the comparison case-sensitive if the
comparison is made using the case-sensitive –ceq comparison operator

$a = “abc”
$b = “ABC”
if ($a -ceq $b){write-host ‘$a is equal to $b’}

Since, when compared case-sensitively, “ABC” is not equal to “abc”, the test in the if statement returns
$false and the code in the if statement’s script block is not executed. Figure 12-6 shows the result of
executing the two preceding sets of commands to carry out case-insensitive and case-sensitive compar-
isons respectively.

Figure 12-6

There are six other forms of the Compare() method, which, for example, allow you to specify cultural
rules and to compare parts of the string objects by using indexes into the string values. These overloads
are particularly useful if you want to use cultures for languages other than English and go beyond the
functionality in Windows PowerShell version 1.0. If you want to explore the definition of the Compare()
method from Windows PowerShell use the following command, which displays the definition in a way
that is a little more readable than the default.

([System.String] | get-member -static compare).definition.Split(‘,’)

The .NET Framework 2.0 SDK has full documentation of the various overloads.

270

Part I: Finding Your Way Around Windows PowerShell

16_946939 ch12.qxp 3/15/07 7:06 PM Page 270

The CompareTo() Method
The CompareTo() method is another way to compare two strings. You can compare the value of a string
object whose CompareTo() method is called with the value of another string object. The effect is the
same as that obtained by using the Compare() method without a boolean argument. The Compare()
method is a static method of the System.String class. The CompareTo() method is available on a
System.String instance object. The CompareTo() method does not have the culture-specific overloads
that the Compare() method has. By default, the CompareTo() method carries out a case-sensitive com-
parison.

The following code allows you to make comparisons, using the CompareTo() method, that are similar
to those shown previously in Figure 12-4.

$a = “abc”
$b = “abcd”
$a.CompareTo($b)
$b = “ab”
$a.CompareTo($b)
$b = “abc”
$a.CompareTo($b)

Figure 12-7 shows the results of running the preceding code.

Figure 12-7

In Windows PowerShell, you can achieve results that are the same as those produced by the
CompareTo() method, by using the PowerShell comparison operators. In fact, PowerShell gives you
more flexibility, since you can carry out both case-sensitive and case-insensitive comparisons.

The Contains() Method
The Contains() method allows you to test whether the value of one string object contains the value of
another string object. This method can be used with string literals or variables. The following code
allows you to test whether the value of the variable $a contains a string literal and two values assigned
to the variable $b. The Contains() method returns True when the value of the string object whose
Contains() method is called contains the value of another string object. Otherwise, it returns False.

$a = “Hello world!”
$a.Contains(“world”)
$b = “ello”
$a.Contains($b)
$b = “Jello”
$a.Contains($b)

271

Chapter 12: Processing Text

16_946939 ch12.qxp 3/15/07 7:06 PM Page 271

Figure 12-8 shows the result of executing the preceding commands.

Figure 12-8

You can also use the Contains() method with a string literal. The following command returns True:

“Hello”.Contains(“He”)

PowerShell provides a –contains comparison operator. In Release Candidate 2, it works with numeric
data or character arrays. For example, the following command returns True:

“H”, “e”, “l” -contains “l”

But attempting to use the –contains operator with a string, as in the following example, returns
nothing:

“Hello” –contains “He”

The CopyTo() Method
The CopyTo() method copies a specified sequence of characters contained in the value of a string to a
specified destination in the elements of a character array. The CopyTo() method takes the following
general form:

StringObject.CopyTo(IndexInString, DestinationCharacterArray, IndexInDestination,
CountOfCharactersToBeCopied)

The following code uses the CopyTo() method to copy three characters, starting at element 0 of the
array $a, to the character array $b. The copied characters are copied to elements beginning at element
[2]. The content of the character array $b is displayed before and after the characters are copied to it
from $a.

$a = “abcdefgh”
[char[]]$b = “A”, “B”, “C”, “D”, “E”, “F”, “G”
$a
$b
$a.CopyTo(0, $b, 2, 3)
$b

Figure 12-9 shows the results when the preceding commands are executed.

272

Part I: Finding Your Way Around Windows PowerShell

16_946939 ch12.qxp 3/15/07 7:06 PM Page 272

Figure 12-9

The EndsWith() Method
The EndsWith() method tests whether the value of the string object whose EndsWith() method is
being used ends with the string specified in parentheses. It returns a boolean value accordingly. This
allows you to test if a target string returned by an application ends with a specified sequence of charac-
ters and use that test to determine how to process the string.

The EndsWith() method is overloaded. The simplest usage is this form:

StringObject.EndsWith(StringObject2)

The following example shows that form of the method. A string is assigned to $a and that string is tested
separately against two test strings. The method returns, respectively, True and False for the two test
strings.

$a = “This is a short string”
$a.EndsWith(“ring”)
$a.EndsWith(“sentence”)

Figure 12-10 shows the results of running this code.

Figure 12-10

Another form of the EndsWith() method is the following:

StringObject.EndsWith(StringObject2, ComparisonType)

The comparison types that are new in version 2.0 of the .NET Framework are enumerated in the follow-
ing list.

273

Chapter 12: Processing Text

16_946939 ch12.qxp 3/15/07 7:06 PM Page 273

❑ CurrentCulture — Compares strings using culture-sensitive sorting rules defined by the cur-
rent culture

❑ CurrentCultureIgnoreCase — The same as CurrentCulture, but case is ignored

❑ InvariantCulture — Compares strings, using sorting rules appropriate to the invariant
culture

❑ InvariantCultureIgnoreCase — The same as InvariantCulture, but case is ignored

❑ Ordinal — Compares strings using ordinal sort rules

❑ OrdinalIgnoreCase — The same as Ordinal, but case is ignored

The third form of the EndsWith() method takes this form.

StringObject.Endswith(StringObject2, IgnoreCaseOrNot, CultureInfo)

Cultures are defined in RFC 1766 (www.ietf.org/rfc/rfc1766.txt). The language code is defined
using the two-lowercase-character notation defined in ISO 639-1. The country/region code is defined
using the two-uppercase-character notation defined in ISO 3166. Detailed discussion of culture and its
handling is beyond the scope of this chapter. Further information on how the .NET Framework handles
cultures can be found in the .NET Framework documentation for the
System.Globalization.Culture.Info class.

The Equals() Method
The Equals() method allows you to compare two strings for equality. The Equals() method returns a
boolean value. The method is overloaded.

The following example shows some of the ways in which the Equals() method can be used.

$a = “Hello world!”
$b = “Hello world!”
$a.Equals($b)
$c = “Goodbye world!”
$a.Equals($c)
[System.String]::Equals($a,$b)
[System.String]::Equals($a,$c)

Figure 12-11 shows the results of running the preceding commands.

Figure 12-11

274

Part I: Finding Your Way Around Windows PowerShell

16_946939 ch12.qxp 3/15/07 7:06 PM Page 274

Windows PowerShell provides support for string comparisons using the –eq, -ceq, and –ieq compari-
son operators.

The get_Chars() Method
The get_Chars() method retrieves a character at a specified index. It takes the following general form:

StringObject(integerIndex)

The following code shows retrieval of individual characters from a sample string. The integer argument
to the get_Chars() method corresponds to the zero-based index of the character element of the string.

$a = “This is a string”
$a.Get_Chars(0)
$a.Get_Chars(1)
$a.Get_Chars(2)
$a.Get_Chars(3)

As you can see in Figure 12-12, the indexes 0 through 3 retrieve the first four characters of the value of
the string object.

Figure 12-12

The get_Length() Method
The get_Length() method returns an integer value that corresponds to the number of characters in the
value of the string object. It returns the same integer value as the Length property of the String object,
as shown in the following example.

$a = “This”
$a.get_Length()
$a.length

Figure 12-13 shows the results of running the preceding commands at the command line.

Figure 12-13

275

Chapter 12: Processing Text

16_946939 ch12.qxp 3/15/07 7:06 PM Page 275

The GetType() and GetTypeCode() Methods
The GetType() and GetTypeCode() methods retrieve information about the type of an object.

To find out the type of a string, use the following code:

“Hello”.GetType()

If you want to show the type of a string, together with the relevant namespace information, use the fol-
lowing code:

“Hello”.GetType().FullName

If you only want to retrieve the type code of a String object use this code:

“Hello”.GetTypeCode()

Figure 12-14 shows the results from running the preceding commands.

Figure 12-14

As you can see in Figure 12-14, the GetType() method displays, by default, a limited amount of infor-
mation about the string object. If you want to see full metadata about the String object, use the
format-list cmdlet as demonstrated here:

“Hello”.GetType() |
format-list *

Figure 12-15 shows some of the information about the object, which is then displayed.

Figure 12-15

276

Part I: Finding Your Way Around Windows PowerShell

16_946939 ch12.qxp 3/15/07 7:06 PM Page 276

The IndexOf() and IndexOfAny() Methods
The IndexOf() method allows you to retrieve the index of the first occurrence in a string of a specified
character or string. Once you find the index of the occurrence of a string you can use that index to cap-
ture a desired substring starting at the index. The IndexOf() method is an overloaded method that
returns an integer value.

The following example illustrates some of the forms of the IndexOf() method. The first two, respec-
tively, look for the occurrence of a single character and a string. Both return the index of 2, since that is
the index of the character sought or the first character of the specified string.

$a = “This is a longer sentence.”
$a.IndexOf(“i”)
$a.IndexOf(“is”)

You can also supply an integer value specifying where the search is to start. This is shown in the follow-
ing commands:

$a.IndexOf(“i”,0)
$a.IndexOf(“i”,3)
$a.IndexOf(“i”,6)

The first command is the same as supplying no index specifying where to start searching. The second
example starts at position 3. It therefore starts after the i in This and finds the i in is. The third com-
mand starts searching at position 6. Since no matching character is found in the rest of the string, the
value -1 is returned.

Figure 12-16 shows the result of running the preceding commands.

Figure 12-16

The IndexOfAny() method differs in that it attempts to match any character in a char array to the char-
acters in a string. It reports the index of any character in the string that occurs in an element of the char-
acter array. The following example shows the use of the IndexOfAny() method:

$a = “This is a longer sentence.”
[System.Char[]]$b = ‘.’, ‘s’, ‘g’
$a.IndexOfAny($b)

The first character in the char array that occurs in the string is the character s, which occurs at index 3.
So 3 is returned, as shown in Figure 12-17.

277

Chapter 12: Processing Text

16_946939 ch12.qxp 3/15/07 7:06 PM Page 277

Figure 12-17

The IndexOfAny() method is overloaded. The other form is:

StringObject(char[], numberToStartAt, numberOfCharactersToSearch)

It allows you to search a specified substring of the string for matching characters.

The Insert() Method
The Insert() method inserts a specified string into an existing string, starting at a specified index. The
following example shows how to use the Insert() method.

The aim is to insert the word PowerShell with a following space into a string that currently has the value
of Hello World!.

$a = “Hello world!”
$a.Insert(6, “PowerShell “)

Figure 12-18 shows the result of running the code.

Figure 12-18

The LastIndexOf() and LastIndexOfAny() Methods
The LastIndexOf() and LastIndexOfAny() methods are used to find the last occurrence of a speci-
fied target in an existing string. The LastIndexOf() method finds an occurrence of a specified character
or string. The LastIndexOfAny() method finds the last occurrence of any character in a character array.
Each of the methods returns an integer value representing the index of the first character of the last
match in the existing string.

The following example finds the last occurrence of the letter l in the string Hello world!. It’s the l of
world.

$a = “Hello world!”
$a.LastIndexOf(“l”)

278

Part I: Finding Your Way Around Windows PowerShell

16_946939 ch12.qxp 3/15/07 7:06 PM Page 278

The integer returned is 9, which is the index of the last occurrence of the letter l in the string $a.

The following example finds the last occurrence in $a of any character in the character array $b:

[System.Char[]]$b = ‘!’, ‘l’, ‘e’
$a.LastIndexOfAny($b)

The integer value returned is 11, which is the index of the exclamation mark in the value of $a. Figure
12-19 shows the result of running the preceding commands.

Figure 12-19

The PadLeft() and PadRight() Methods
The PadLeft() and PadRight() methods add specified characters to, respectively, the left and right of
a string to increase the number of characters to a specified value. You might use these methods to adjust
the position of characters in a string to correspond to a string length expected in another application or if
data is to be stored in a fixed-length datatype. The methods are overloaded. When the form of the
method is

StringObject.PadLeft(Length)

then the padding character is a space character, and Length is an integer value that is the length of the
padded string. When the form of the method is

StringObject.PadLeft(Length, PaddingCharacter)

the padding character is specified explicitly.

The following example pads the string Hello to a length of 10 characters, using asterisks. More often
you might use space characters, but they display poorly in a screenshot.

$a = “Hello”
$a.PadLeft(10)
$a.PadLeft(10, “*”)
$a.PadRight(10)
$a.PadRight(10,”*”)

Figure 12-20 shows the results of running the preceding commands.

279

Chapter 12: Processing Text

16_946939 ch12.qxp 3/15/07 7:06 PM Page 279

Figure 12-20

The Remove() method
The Remove() method removes characters from a specified string. You might use this to remove
unwanted characters from the end of a string, or remove a specified number of unwanted characters
from a string. The method is overloaded. The simplest form is

StringObject.Remove(StartingIndex)

which removes all characters from the specified starting index to the end of a string. The other form is:

StringObject.Remove(StartingIndex, NumberOfCharactersToRemove)

The following examples illustrate both forms of the Remove() method. The first use of
Remove()removes all characters from a string, starting at index 5. Notice that the first use of the
Remove() method produces a string that is the same length as the desired string, but the $a variable’s
length (and hence its value) is not changed. To change the value of $a, you need to use the second
approach.

$a = “Hello world!”
$a.Remove(5)
$a.length
$a = $a.Remove(5)
$a
$a.length

Figure 12-21 illustrates the results when you execute the preceding commands.

Figure 12-21

The second example shows the removal of a specified number of characters from a string. The aim is to
alter the string This is a sentence to This sentence by removing characters from the string, using
the Remove() method.

280

Part I: Finding Your Way Around Windows PowerShell

16_946939 ch12.qxp 3/15/07 7:06 PM Page 280

$a = “This is a sentence”
$a.Remove(4,5)
$a.length
$a = “This is a sentence”
$a = $a.Remove(4,5)
$a.length

Figure 12-22 shows the results you see when you execute the preceding commands. The first character
removed is the space at the fifth position (index of 4). Five characters are removed.

Figure 12-22

The Replace() Method
The Replace() method is an overloaded method that replaces all occurrences of a specified character or
sequence of characters with a specified character or sequence of characters. The two forms of the
Replace() method are shown here.

StringObject.Replace(oldCharacter, newCharacter)
StringObject.Replace(oldString, newString)

In the following example, I won’t assign the result of the Replace() method to a variable so that I need
only assign the original value to the variable once. In real code, you would likely assign the result of the
Replace() method to an appropriate variable.

$a = “Mary had a little lamb.”
$a.Replace(‘l’, ‘L’)
$a.Replace(“had”, “no longer has”)

Figure 12-23 shows the result of executing the preceding commands. The first replacement replaces
twice in little and once in lamb.

Figure 12-23

281

Chapter 12: Processing Text

16_946939 ch12.qxp 3/15/07 7:06 PM Page 281

You cannot use the Replace() method on a string object to use a regular expression when replacing a
string. To replace a substring using regular expressions, you need to use the Regex object.

The Split() Method
The Split() method, which is overloaded, allows you to split a string into substrings, using a defined
delimiter character or characters (you can have multiple delimiters). The substrings are returned as a
String array.

The following example shows how to use the Split() method to split a string that contains comma-
separated values. The Split() method returns an array of the substrings contained in the original
string. Notice that the delimiter character to be used as the splitting point is specified in the argument of
the method. Notice, too, that the character used as the splitting point does not appear in any of the ele-
ments of the resulting String array. First, the string to be split is defined; then it is split using the
comma as splitting point.

$c = “ABC,DEF,GHI,JKL”
$a = $c.Split(“,”)
$a
$a.GetType()

When the elements of the $a variable, which is an array, are displayed, four substrings have been
assigned to the elements of the array. Figure 12-24 shows the result when you execute the preceding
commands.

Figure 12-24

Strictly speaking, the argument to the form of the Split() method shown earlier is a character array —
so you can specify more than one character to define the splitting point. The following example uses a
comma and semicolon to split a string.

$c = “ABC,DEF;GHI,JKL,MNO;PQR;”
$a = $c.Split(“,;”)
$a
$a.GetType().Fullname

Figure 12-25 shows the result of executing the preceding commands.

282

Part I: Finding Your Way Around Windows PowerShell

16_946939 ch12.qxp 3/15/07 7:06 PM Page 282

Figure 12-25

One use of the Split() method that is helpful when using PowerShell is to make it easier to display the
definition of PowerShell’s methods. Suppose that you want to find the definition of the Split()
method itself. Use the following command to see the definition of the Split() method:

(“Hello world!” | get-member split).definition

The part of the command inside parentheses is a two-step pipeline. A literal string is passed to the sec-
ond step. In that step, the get-member cmdlet is used to return information about the Split() method.
The definition property of that method is selected for display. As you can see in the upper part of Figure
12-26, the definition isn’t nicely laid out for you to read. Using the Split() method and specifying a
comma as the separator, as in the following command, lays out the definition information onscreen in a
more readable way, as you can see in the lower part of Figure 12-26:

(“Hello world!” | get-member split).definition.Split(‘,’)

Figure 12-26

You can also use the Split() method to carry out a word count on a text file. You can access any of the
Windows PowerShell help files, using the $PSHome variable. Suppose that you want to do a word count
on the help file for wildcards. You can assign the content of the file to the variable $linebyline by
using the get-content cmdlet to capture each line of the file, with the following command:

$linebyline = get-content $PSHome\about_wildcard.help.txt

283

Chapter 12: Processing Text

16_946939 ch12.qxp 3/15/07 7:06 PM Page 283

You can display a count of the lines using either:

$linebyline.count

or:

$linebyline.length

You can combine the lines using the following command:

$singleString = [System.String]::Join(‘ ‘, $linebyline)

The value of the variable $singleString is a string. You can then split the string at each space character
using the Split() method:

$words = $singleString.Split()
$words.count

Seemingly, you have 871 words. However, if you use the following command:

$words |
more

you can see that quite a few of the “words” are blank lines. This is because there are sequences of space
characters in the help file.

Figure 12-27 shows the results of executing the preceding commands.

Figure 12-27

The problem of multiple successive space characters is a common one. So, the Split() method has a
form that allows you to remove empty entries, as in the following command:

$wordsCleaned = $singleString.Split(‘ ‘, [stringsplitoptions]::RemoveEmptyEntries)

284

Part I: Finding Your Way Around Windows PowerShell

16_946939 ch12.qxp 3/15/07 7:06 PM Page 284

You can see that when you execute

$wordsCleaned.count

there are now only 446 words (rather than the previous 871). If you execute the following command:

$wordsCleaned |
more

and inspect the result, you can see that there are no longer blank elements of the array in
$wordsCleaned. Figure 12-28 shows the result of executing the preceding commands.

Figure 12-28

The StartsWith() Method
The StartsWith() method tests whether a string starts with the sequence of characters specified as the
argument to the method, and returns a boolean value accordingly. The method takes three different
forms:

StringObject.StartsWith(OtherString)
StringObject.StartsWith(OtherString,StringComparison)
StringObject.StartsWith(OtherString, IgnoreCaseOrNot, CultureInformation)

The enumerated values for the string comparison argument were listed earlier in this chapter in the sec-
tion for the EndsWith() method.

The ToCharArray() Method
The ToCharArray() method takes the characters in a string and places one of them in each element of a
character array. The method is overloaded. The simplest form of the ToCharArray() method is:

StringObject.ToCharArray()

The other form has two integer arguments and is:

StringObject.ToCharArray(StartIndex,NumberOfCharacters)

285

Chapter 12: Processing Text

16_946939 ch12.qxp 3/15/07 7:06 PM Page 285

This takes a specified number of characters starting from the starting index in the string.

The following example shows how the ToCharArray() method differs from the Split() method. All
characters are used in creating the character array when using the ToCharArray() method. When you
use the Split() method, the character specified for splitting is discarded. Also, each element of the
array created using ToCharArray() is a single character. When you use the Split() method, the ele-
ments of the resulting array can be strings of any length.

$c = “ABC,DEF;GHI”
$a = $c.ToCharArray()
$a

Notice in Figure 12-29 that the comma and semicolon in the existing string are included as elements in
the new array when the ToCharArray() method is used.

Figure 12-29

The ToLower() and ToLowerInvariant() Methods
The ToLower() method converts all characters in a string to lowercase. It is overloaded and takes two
forms:

StringObject.ToLower()
StringObject.ToLower(CultureInfo)

The following example shows the ToLower() method in action:

$a = “Alan Smith lives in Paris.”
$a.ToLower()

Figure 12-30 shows the results when running the preceding commands.

Figure 12-30

286

Part I: Finding Your Way Around Windows PowerShell

16_946939 ch12.qxp 3/15/07 7:06 PM Page 286

The ToLowerInvariant() method does the same as the ToLower() method but uses the casing rules of
the invariant culture.

The ToUpper() and ToUpper Invariant() Methods
The ToUpper() method converts all characters in a string to uppercase. It is overloaded and takes two
forms:

StringObject.ToUpper()
StringObject.ToUpper(CultureInfo)

The ToUpperInvariant() method does the same as the ToUpper() method but uses the casing rules of
the invariant culture.

The Trim(), TrimEnd(), and TrimStart() Methods
The Trim() method removes specified characters from both the beginning and end of a string. The
method is overloaded and has two forms. The simpler form:

StringObject.Trim()

removes whitespace characters from the beginning and end of the specified string. The other form:

StringObject.Trim(CharacterArray)

specifies an array of characters to be removed.

The TrimEnd() and TrimStart() methods are not overloaded. These methods accept a character array
as their argument.

Casting Strings to Other Classes
Once you have processed strings emitted from traditional applications and suitably manipulated them
you may want to explicitly convert suitable strings to other datatypes. The following sections provide
several examples of doing that.

URI
Given a suitably structured string, you can create a .NET URI object by using the technique shown in
this example.

$a = “http://www.microsoft.com”
[URI]$c = $a

Typing

$c

287

Chapter 12: Processing Text

16_946939 ch12.qxp 3/15/07 7:06 PM Page 287

causes the properties of the URI object to be displayed, as shown in Figure 12-31.

Figure 12-31

You can convert the $a variable to a URI object by using the following command:

$a = [URI]$a

datetime
If you enter a string which is a valid datetime value, you can easily cast it to the datetime datatype.
That then allows you to access the properties of a datetime object. The following example shows how:

[System.Datetime]$a = “2006/12/31”

You can then access properties of the datetime object, such as the DayOfWeek property:

$a.DayOfWeek

Figure 12-32 shows the result of executing the preceding commands.

Figure 12-32

You need to be careful that you know the meaning of the string you cast to a DateTime object. Some
dates are ambiguous, meaning one thing in one locale and having another meaning in another locale.

288

Part I: Finding Your Way Around Windows PowerShell

16_946939 ch12.qxp 3/15/07 7:06 PM Page 288

For example the string 08/04/2006 typically means August 4th in the United States but means 8th April
in the UK. As shown in the lower part of Figure 12-32, the U.S. assumptions are used by Windows
PowerShell.

To view all members of the datetime object, type this command:

$a | get-member

XML
A similar technique is available for casting to XML. The following example shows the creation of an
XML object from a suitably structured string. All the methods and properties of the XML object are then
available for use. This example uses the get_ChildNodes() method to display the child nodes of the
document element:

[XML]$xml = “<Books><Book>Beginning Regular Expressions</Book><Book>Professional
Windows PowerShell</Book></Books>”
$xml.get_ChildNodes()

As you can see in Figure 12-33, there are two child nodes whose name is Book.

Figure 12-33

Regex
You can use the full power of .NET regular expressions to work with strings in Windows PowerShell.
You use the –match operator when testing for a match between a string (on the left side of the –match
operator) and a regular expression pattern (on the right side of the -match operator).

The following examples test for matches between a literal string and a regular expression pattern. To test
if a string, ABCDEF, matches a pattern use either of the following commands:

“ABCDEF” –match “.*CD.*”

or:

“ABCDEF –match “CD”

Either of the preceding commands looks for the character sequence CD in the string. Since the string con-
tains that pattern, the value True is displayed.

289

Chapter 12: Processing Text

16_946939 ch12.qxp 3/15/07 7:06 PM Page 289

You can test for a match at the beginning of string using the ^ metacharacter. A metacharacter is a char-
acter with a special meaning in a regular expression pattern. The ^ metacharacter matches a position just
before the first character of a string, so the pattern ^AB matches a string that begins with AB.

“ABCDEF” –match “^AB”

You test for a match at the end of a string by using the $ metacharacter. The $ metacharacter matches a
position immediately after the last character of a string, so the pattern EF$ matches a string that ends
with EF.

“ABCDEF” –match “EF$”

You can test if a character class is matched by enclosing a class of characters in square brackets. The pat-
tern Ban[dg] matches a character sequence Ban followed by any one character in the square brackets.
So, both the following statements return True:

“Band” –match “Ban[dg]”
“Bang” –match “Ban[dg]”

Figure 12-34 shows the results of executing the preceding commands.

Figure 12-34

You can use the –match operator in the script block of the where-object cmdlet. Suppose that you
want to find all running services that begin with the sequence of characters SQL in the display name. To
do that, you can use the following command:

get-service |
where {$_.status –eq “running”} |
where {$_.displayname –match “^sql.*”} |
sort {$_.name} |
More

Figure 12-35 shows the results of executing the preceding text on a machine that has SQL Server 2005
installed.

290

Part I: Finding Your Way Around Windows PowerShell

16_946939 ch12.qxp 3/15/07 7:06 PM Page 290

Figure 12-35

The get-service cmdlet without an argument will find all services. The first where clause:

where {$_.status –eq “running”}

filters the results so that only running services are passed on to the next where clause:

where {$_.displayname –match “^sql.*”}

which does the regular expression matching. The regular expression pattern, ^sql.*, matches the posi-
tion before the first character of the name, then the literal sequence of three characters, sql, followed by
any number of characters (including zero characters). In other words, it matches any displayname that
begins with the sequence of three characters sql.

Summary
Windows PowerShell is object-based but also provides powerful and flexible tools to manipulate text.
The .NET System.String class is the basis for PowerShell’s string manipulation, and this chapter dis-
cussed the methods of the System.String class and showed you how several of the methods are used.
For some uses, Windows PowerShell provides its own syntax, for example for string comparison. For
other string manipulation tasks you are dependent, at least in PowerShell version 1.0, on the methods of
System.String. The chapter also showed you how you can convert strings to other datatypes.

291

Chapter 12: Processing Text

16_946939 ch12.qxp 3/15/07 7:06 PM Page 291

16_946939 ch12.qxp 3/15/07 7:06 PM Page 292

COM Automation

Windows PowerShell is designed primarily to make use of the .NET Framework and its associated
classes. However, it is going to take some time and presumably several versions of Windows
PowerShell before all of a system will be exposed to Windows PowerShell as cmdlets. The
Windows PowerShell team has suggested a period of 3 to 5 years for the transition to .NET and
system coverage by cmdlets to be completed. Therefore, when using version 1 of Windows
PowerShell and for some time afterward you are likely to want to (or have to) continue to make
use of existing approaches, including the manipulation of COM objects. After all, even when there
is a choice in a future version of Windows PowerShell, why should you always throw away your
existing working code? The support for COM automation in Windows PowerShell means that you
can leverage your existing knowledge of COM objects that are relevant to your needs.

In this chapter, therefore, I introduce you to working with COM objects from Windows
PowerShell. While for some COM objects there are Windows PowerShell cmdlet equivalents, for
many there are not. Well not yet anyway. If your existing COM-based code works well, you may
want to postpone updating that code or writing new code.

Not all COM objects are supported in Windows PowerShell version 1. For example, COM
objects which are based on CDO (Exchange Collaboration Data Objects) are not supported in
version 1.0.

Using the new-object Cmdlet
Windows PowerShell allows you to create and manipulate Object Linking and Embedding (OLE)
automation compatible COM objects using the new-object cmdlet. The new-object cmdlet also
allows you to create new .NET objects. I briefly describe the new-object cmdlet and then go on in
this chapter to focus on its usage with COM objects. The aspects of the new-object cmdlet that
are relevant to creating .NET objects are described in Chapter 14.

17_946939 ch13.qxp 3/15/07 7:06 PM Page 293

The new-object cmdlet can take the following parameters in addition to supporting the common
parameters (which are described in Chapter 6):

❑ TypeName — The fully qualified name of the .NET type of the object that is to be created. A
positional parameter used in position 1.

❑ Arguments — Arguments to the constructor of the type specified using the TypeName para-
meter. The Arguments parameter is optional. When present it is a positional parameter in
position 2.

❑ ComObject — Used when creating a new COM object.

❑ Strict — Used with the -ComObject parameter. Specifies that an error should be raised if the
cmdlet attempts to access an interop assembly. This allows differentiation between a true COM
object and a .NET object with a wrapper.

The TypeName and Arguments parameters are used in connection with creating new .NET objects.
Those parameters are described in detail in Chapter 14.

To create a new COM object, use the new-object cmdlet in the following form:

$myCOMObject = new-object -comobject NameOfCOMType

or, if you want to exclude the possibility of using an interop assembly, use the –strict parameter as in
the following command:

$myCOMObject = new-object -comobject NameOfCOMType -strict

I show you working examples of this usage in the next section. However, for some COM applications, you
don’t need to use the new-object cmdlet; you can simply type the application name at the command
line. For example, the following commands open an instance of Notepad and Calculator, respectively:

Notepad
Calc

However, when you start Notepad or Calculator in this way, you have no access to the object’s members.

Working with Specific Applications
The following sections describe how to access a number of commonly used COM applications and carry
out some tasks from Windows PowerShell. The extent of useful automation you can achieve with any
individual COM object depends on the members that are exposed to you and your knowledge of those
members. If you want to explore the possibilities of a particular unfamiliar COM object, use the get-
member cmdlet to find which methods and properties you can access.

Working with Internet Explorer
Internet Explorer is one of the most easily manipulated COM applications. To launch an instance
of Internet Explorer, type the following command:

294

Part I: Finding Your Way Around Windows PowerShell

17_946939 ch13.qxp 3/15/07 7:06 PM Page 294

$ie = new-object -comobject InternetExplorer.application

After a short pause it seems that nothing has happened, since the PowerShell cursor is displayed. No
new Internet Explorer window is displayed. However, if you type a command like

$ie.visible

the value False is displayed on the console so you know that the $ie object exists and has a visible
property. If the $ie object or its visible property didn’t exist, you would expect Windows PowerShell
to either display nothing (assuming that the $erroraction variable was set to SilentlyContinue) or
display an error message saying that the object or property didn’t exist. I discuss errors in Chapter 17.

You can explore the properties of the $ie object by using the command

$ie | get-member –memberType property

and the information shown in Figure 13-1 is displayed, demonstrating that the visible property takes a
value that is of type System.Boolean.

Figure 13-1

To make the Internet Explorer window visible, set the value of the visible property to True, like this:

$ie.visible = $true

295

Chapter 13: COM Automation

17_946939 ch13.qxp 3/15/07 7:06 PM Page 295

Depending on how your system is set up, the Internet Explorer window will either be displayed on top
of other windows or you will see an icon flashing in the start bar for the newly visible Internet Explorer
window. Click the flashing icon to display the Internet Explorer window. As you can see in Figure 13-2,
the Internet Explorer window doesn’t display any content but does, by default, display toolbars and the
status bar. Depending on what software you have installed, the appearance may vary a little. For exam-
ple, I have the Google toolbar and SnagIt screen capture software installed in Internet Explorer, as you
can see in Figure 13-2.

Figure 13-2

To find out what methods are available to you to manipulate or explore an instance of Internet
Explorer, type:

$ie | get-member –memberType method

To see the properties grouped, use:

$ie | get-member -memberType Property

The $ie object has 16 methods and 31 properties, which provides significant scope for automation from
Windows PowerShell.

For example, you can hide the toolbar and status bar, respectively, by using the following commands:

296

Part I: Finding Your Way Around Windows PowerShell

17_946939 ch13.qxp 3/15/07 7:06 PM Page 296

$ie.toolbar = $false
$ie.statusbar = $false

To make the toolbar and status bar visible again, type:

$ie.toolbar = $true
$ie.statusbar = $true

To add some text to the status bar, type:

$ie.statusText = “Hello Windows PowerShell World!”

Figure 13-3 shows the specified text displayed in the status bar.

Figure 13-3

To hide and display the address bar, use the following commands:

$ie.addressbar = $false
$ie.addressbar = $true

You can set the size of the Internet Explorer window using the height and width properties. To set the
window size to 200 pixels high by 300 pixels wide, use:

$ie.height = 200
$ie.width = 300

You can move the Internet Explorer window around the screen, using the left and top properties. The
top-left corner of the screen is 0 from the left and 0 from the top. The following commands situate the
Internet Explorer window exactly at the top left of the screen:

$ie.left = 0
$ie.top = 0

If you want to move the top left of the Internet Explorer window down, set a positive value to $ie.top.
The larger the value, the farther down the screen the Internet Explorer window moves. If you want to
move the Internet Explorer window to the right set a positive value to $ie.left. The larger the value,
the farther the Internet Explorer window moves to the right.

297

Chapter 13: COM Automation

17_946939 ch13.qxp 3/15/07 7:06 PM Page 297

You can use the navigate() or navigate2()methods to access a specified URL. For simple cases, the
two methods appear to do the same thing. For example, to go to the Microsoft Web site, type:

$ie.navigate(“http://www.microsoft.com”)

And to go to the World Wide Web Consortium site, type:

$ie.navigate2(“http://www.w3.org”)

Assuming that you have entered both the preceding commands, you can go back to the Microsoft Web
site using this command:

$ie.GoBack()

And then to return to the World Wide Web Consortium site, type:

$ie.GoForward()

What can you do using this facility to manipulate Internet Explorer? The following script,
DoGoogleSearch.ps1, allows users to carry out a Google search from the Windows PowerShell com-
mand line:

Carries out a Google search on a user-specified term
write-host “This Windows PowerShell script carries out a Google search on the term
you enter.”
$searchTerm = read-host(“Enter the desired Google search term”)
$ie = new-object -comobject InternetExplorer.application
$ie.navigate2(“http://www.google.com/search?hl=en&q=$searchTerm”)
$ie.visible = $true

The read-host cmdlet is used to accept a search term from the user, which is assigned to the variable
$searchTerm. Then a new Internet Explorer instance is created. Its navigate2() method is used to go
to Google.com. The $searchTerm variable is used in the URL to supply one or more search terms for the
search.

Figure 13-4 shows the script being executed and the user input accepted.

Figure 13-4

Figure 13-5 shows the Internet Explorer window that is displayed as a result of running the script shown
in Figure 13-4.

298

Part I: Finding Your Way Around Windows PowerShell

17_946939 ch13.qxp 3/15/07 7:06 PM Page 298

Figure 13-5

You can extend this in various ways. For example, you may want to make the search site-specific or add
text to the status bar to some relevant information the user. The following code, DoGoogleSearch2.ps1,
adapts the Google search to make the search site-specific.

Carries out a site-specific Google search on a user-specified term
write-host “This Windows PowerShell script carries out a site-specific Google
search on the search term you enter.”
$searchTerm = read-host(“Enter the desired Google search term”)
$siteToSearch = read-host(“Enter the site you want to search”)
$ie = new-object -comobject InternetExplorer.application
$ie.navigate2(“http://www.google.com/search?hl=en&q=$searchTerm+site%3A$siteToSearc
h”)
$ie.visible = $true

To close the Internet Explorer window from Windows PowerShell, simply type:

$ie.Quit()

Working with Windows Script Host
You can create an instance of the Windows Script Host from Windows PowerShell as follows:

$myWSH = new-object -ComObject wscript.shell

299

Chapter 13: COM Automation

17_946939 ch13.qxp 3/15/07 7:06 PM Page 299

Again, nothing seems to have happened. To demonstrate that you have an instance of the Windows
Script Host running, type:

$myWSH.popup(“This pop-up window was created from Windows PowerShell!”)

Figure 13-6 shows the pop-up window created by the preceding command.

Figure 13-6

To see the methods and properties available for Windows Script Host, use this command:

$myWSH |
get-member |
format-table

Figure 13-7 shows the members returned by the preceding command.

Figure 13-7

You can use the run() method of the Windows Script Host to run other COM applications. For example,
either of the following commands will run Notepad:

$np1 = $myWSH.run(“%windir%\System32\Notepad.exe”)
$np2 = $myWSH.run(“%systemroot%\System32\Notepad.exe”)

300

Part I: Finding Your Way Around Windows PowerShell

17_946939 ch13.qxp 3/15/07 7:06 PM Page 300

In practice, Windows PowerShell provides a more convenient way to run executables in C:\Windows\
System32. Simply type commands such as:

Notepad

or:

MSHearts

to launch Notepad or Hearts, respectively, from the PowerShell command line.

You can read the current Path environment variable by using the RegRead() method, as in the follow-
ing command:

$myWSH.regread(“HKLM\System\CurrentControlSet\Control\Session
Manager\Environment\path”)

In Windows PowerShell, you have the convenience of using the command

get-childitem env:path

to access the Path environment variable, and you may prefer using the PowerShell Registry provider to
navigate the registry.

Working with Word
To create a new instance of Word 2003 (or other installed version of Word), type this command:

$word = new-object -comobject Word.application

As with other applications, the new instance of Word is not visible when it is created. To make it
visible type:

$word.visible = $true

Word has an enormous number of methods and properties available. To list them, type:

$word |
get-member |
out-host -paging

You can access various pieces of information. For example, to access your Word user name, as shown in
Figure 13-8, type:

$word.username

301

Chapter 13: COM Automation

17_946939 ch13.qxp 3/15/07 7:06 PM Page 301

Figure 13-8

You can find the currently open documents in Words using this command, as shown in the lower part of
Figure 13-8:

$word.documents |
format-list fullname

If you don’t use the format-table cmdlet as shown, PowerShell will display an extensive list of prop-
erties of the documents. If you want to explore in detail how to work with Word documents from
PowerShell, those properties will be helpful in understanding of the object model.

To find which files you have recently had open in Word, type:

$word.recentfiles | select-object Name

Working with Excel
You can work similarly with Excel. The following command creates an instance of Excel 2003:

$Excel = new-object -ComObject Excel.application

As with other COM applications, to make the relevant window visible, you need to type:

$Excel.visible = $true

To explore the many members available to you, type:

$Excel |
get-member

Assuming that you have a spreadsheet called TestSpreadsheet.xls in the root directory of drive c: the
following script, OpenSpreadsheet.xls, will create an Excel object and open a named workbook. I
have made the variables global so that you can access them from the Windows PowerShell command
line, if you wish.

$global:src = “C:\TestSpreadsheet.xls”
$global:excel = New-Object -COM Excel.Application
$global:ci = [System.Globalization.CultureInfo]’en-US’
$global:book = $excel.Workbooks.PSBase.GetType().InvokeMember(

‘Open’, [Reflection.BindingFlags]::InvokeMethod, $null,
$excel.Workbooks, $src, $ci)
$excel.visible = $true

302

Part I: Finding Your Way Around Windows PowerShell

17_946939 ch13.qxp 3/15/07 7:06 PM Page 302

Assuming that the script is in the current directory, type the following command to run it:

.\OpenSpreadsheet.ps1

You can find which workbook(s) are open in that instance of Excel by using this command:

$Excel.workbooks |
select-object Name

Figure 13-9 shows the result of running the preceding command when one workbook is open.

Figure 13-9

Move the cursor manually to cell B3. You can find the current active cell by using this command:

$Excel.ActiveCell |
format-table Column,Row -auto

Figure 13-10 shows the output from the preceding command when cell B3 is the active cell. Notice that
the identifier for the column returned by this command is a number, not the letter you are used to in the
Excel graphical user interface.

Figure 13-10

Accessing Data in an Access Database
You can access data in an Access database from the PowerShell command line. The following command
shows a demonstration of what can be done. I will show you the results and explain how the code works.

$adOpenStatic = 3
$adLockOptimistic = 3

$global:objConnection = New-Object -comobject ADODB.Connection

303

Chapter 13: COM Automation

17_946939 ch13.qxp 3/15/07 7:06 PM Page 303

$global:objCommand = “Select * from Employees”
$global:objRecordset = New-Object -comobject ADODB.Recordset

$objConnection.Open(“Provider = Microsoft.Jet.OLEDB.4.0; Data Source =
c:\Northwind.mdb”)
$objRecordset.Open($objCommand, $objConnection, $adOpenStatic, $adLockOptimistic)

$objRecordset.MoveFirst()

do {write-host $objRecordset.Fields.Item(“EmployeeID”).Value” “ -NoNewLine;
write-host $objRecordset.Fields.Item(“LastName”).Value -NoNewLine;
write-host “,”$objRecordset.Fields.Item(“FirstName”).Value;
$objRecordset.MoveNext()} until
($objRecordset.EOF -eq $True)

$objRecordset.Close()
$objConnection.Close()

The preceding code assumes that you have the Northwind database in the file C:\Northwind.mdb. If
necessary, adapt the location or name of the Northwind database. Figure 13-11 shows the results of run-
ning the script from the command line.

Figure 13-11

The code first sets up variables that are arguments to the method that opens a recordset later in the code:

$adOpenStatic = 3
$adLockOptimistic = 3

Next, variables are created for the connection, command and recordset objects that allow you to retrieve
data from the Access database. The connection and recordset are COM objects created using the new-
object cmdlet.

$global:objConnection = New-Object -comobject ADODB.Connection
$global:objCommand = “Select * from Employees”
$global:objRecordset = New-Object -comobject ADODB.Recordset

Next open the connection:

$objConnection.Open(“Provider = Microsoft.Jet.OLEDB.4.0; Data Source =
c:\Northwind.mdb”)

304

Part I: Finding Your Way Around Windows PowerShell

17_946939 ch13.qxp 3/15/07 7:06 PM Page 304

Then open the recordset, using the command and connection variables as arguments:

$objRecordset.Open($objCommand, $objConnection, $adOpenStatic, $adLockOptimistic)

Move to the first record:

$objRecordset.MoveFirst()

The loop through the records:

do {write-host $objRecordset.Fields.Item(“EmployeeID”).Value” “ -NoNewLine;
write-host $objRecordset.Fields.Item(“LastName”).Value -NoNewLine;
write-host “,”$objRecordset.Fields.Item(“FirstName”).Value;
$objRecordset.MoveNext()} until
($objRecordset.EOF -eq $True)

The write-host cmdlet is used to display three values from each row in the table. Once you have dis-
played the desired data from the row (I chose Employee Id, last name, and first name for this example),
you use the MoveNext() method to move on to the next row. As you can see in Figure 13-11, PowerShell
isn’t particularly convenient for displaying this data.

Finally, tidy up the objects you used:

$objRecordset.Close()
$objConnection.Close()

Working with a Network Share
You can map a drive on a network share to a drive on the local machine. First, create a variable that uses
a COM WScript.Network object:

$network = new-object –comObject WScript.Network

One of the methods you can see if you use the command

$network | get-member

is the MapNetworkDrive() method. You can use that to map a fileshare on a remote machine to a drive
on the local machine. The following command does that:

$network.MapNetworkDrive(“L:”, “\\Helios\Documents”)

You can then switch to the newly created mapping:

L:

And view its contents:

get-childitem

305

Chapter 13: COM Automation

17_946939 ch13.qxp 3/15/07 7:06 PM Page 305

Figure 13-12 shows the results of executing the preceding commands to connect to a network share on
one of my development machines.

Figure 13-12

You can also see that the drive has been added using the get-psdrive cmdlet.

get-psdrive L*

You can use the RemoveNetworkDrive() method to remove the mapping to the network drive:

$network.RemoveNetworkDrive(“L:”)

You can see in Figure 13-13 that the drive L: is no longer available.

Figure 13-13

Using Synthetic Types
The .NET type system that Windows PowerShell uses is extensible. This extensibility is directly relevant
to how Windows PowerShell handles COM objects.

All COM objects have the same type, System.__ComObject, in a .NET Framework setting. That causes
potential problems for Windows PowerShell in distinguishing one COM object from another, since
although all COM objects have the System.__ComObject type, there is a huge variety of underlying
functionality and a large range of members of individual object instances. If you can’t unambiguously
identify the kind of object you are dealing with, it makes writing code to use methods or access or
manipulate properties highly problematic. To resolve that ambiguity, when creating a COM object
Windows, PowerShell creates a synthetic type that uses the common System.__ComObject type and
adds a # to it followed by the Class ID stored in the registry for the relevant class.

306

Part I: Finding Your Way Around Windows PowerShell

17_946939 ch13.qxp 3/15/07 7:06 PM Page 306

The following example displays the synthetic type for Internet Explorer. Create a new instance of
Internet Explorer, using the command:

$ie = new-object -ComObject InternetExplorer.application

Then use the following command to display the members of the $ie object:

$ie |
get-member

A lengthy list of members is displayed, but before those the synthetic type, which refers to the registry
class for Internet Explorer, is displayed. Figure 13-14 shows the synthetic type for Internet Explorer. It is
displayed as System.__ComObject#{d30c1661-cdaf-11d0-8a3e-00c04fc9e26e}. This represents
System__ComObject, plus the information from the registry.

Figure 13-14

To find the relevant Registry key, use the following command once you navigate to HKLM:\Software\
Classes\Interface in the Registry.

get-childitem |
where-object {$_.Name -match “d30c1661”}

Notice that the value used with the where-object parameter matches the value shown in Figure 13-14
for the synthetic type of the Internet Explorer object.

Figure 13-15 shows the relevant key for Internet Explorer at HKLM:\Software\Classes\Interface
accessed from the Windows PowerShell command line.

Figure 13-15

307

Chapter 13: COM Automation

17_946939 ch13.qxp 3/15/07 7:06 PM Page 307

Alternatively you can access the relevant key using the RegEdit utility. To run RegEdit, click the Start,
then select run and type RegEdit in the text box. A convenient way to access the key is to press Ctrl+F to
open the Find dialog box and enter d30c1661. After a significant pause, RegEdit will stop at the
desired place. Figure 13-16 shows the appearance in RegEdit.

Figure 13-16

Each kind of COM object has its own unique (synthetic) type that allows you to predictably use the func-
tionality and data available without the risk of trying to access nonexistent methods or properties,
(assuming that you are familiar with the members of the object).

Summary
You can use the PowerShell new-object cmdlet with the –comObject parameter to create and auto-
mate COM objects.

This chapter showed you how you can create an Internet Explorer window and, from the PowerShell
command line, navigate to a desired URL. You learned how you can create scripts using COM automa-
tion to make use of Internet Explorer. You also saw examples illustrating how you can create Google
searches from the Windows PowerShell command line.

You can automate Microsoft Word and Microsoft Excel by using COM automation from PowerShell. You
saw how you can access data held in an Access database, as illustrated in an example.

You also learned how Windows PowerShell creates synthetic types to distinguish the type of different
kinds of COM objects.

308

Part I: Finding Your Way Around Windows PowerShell

17_946939 ch13.qxp 3/15/07 7:06 PM Page 308

Working with .NET

Windows PowerShell is based on and leverages extensively version 2.0 of the .NET Framework.
This means that you can use Windows PowerShell for an enormous range of scripting functional-
ity, taking advantage of the huge range of.NET Framework classes to provide the functionality
you need to create custom scripts.

Limitations in version 1.0 of Windows PowerShell tend to reflect the fact that many facets of the
Windows operating system are not yet exposed as managed objects. It is likely that an increasing
proportion of a Windows system will be exposed as .NET objects in future versions of the .NET
Framework and, subsequently, in future versions of Windows PowerShell. In the meantime,
Windows PowerShell can be used with existing technologies where .NET classes aren’t available.
In Chapter 13, for example, I showed you how to work with COM objects from Windows
PowerShell.

Windows PowerShell and the .NET
Framework

Unless you have jumped straight into this chapter, you already know that Windows PowerShell is
founded on the .NET Framework and that cmdlets and the objects passed along a Windows
PowerShell pipeline are .NET objects.

Windows PowerShell provides syntax that allows you to create .NET objects and then explore
the members of those .NET objects. You have seen many examples in earlier chapters of using the
get-member cmdlet to explore the members of objects. In this chapter, I introduce you to using
the new-object cmdlet to create new .NET objects. Using such techniques for creating and
exploring .NET objects, you can create many useful scripts by combining them with other
aspects of Windows PowerShell functionality.

18_946939 ch14.qxp 3/15/07 7:07 PM Page 309

To be able to get full advantage from the .NET functionality of Windows PowerShell, you need to have a
good understanding of the parts of the .NET Framework 2.0 classes that are relevant to your needs. The
scope of the .NET Framework 2.0 is huge, so I can only illustrate in this chapter the kind of things that
you can do.

There are several sources of information on the .NET Framework 2.0. Two useful sources of information
are Visual Studio 2005 help and the .NET Framework 2.0 Software Developer’s Kit.

If you have access to an edition of Visual Studio 2005, you can access large quantities of useful informa-
tion on the .NET Framework 2.0. With Visual Studio 2005 open, select Help ➪ Contents. After a pause the
Microsoft Visual Studio 2005 Documentation opens in Microsoft Document Explorer. The volume of
information can be overwhelming. Pin the Contents pane open, and select .NET Framework from the
Filtered by dropdown in the Contents pane. Figure 14-1 shows the appearance with some nodes in the
filtered data expanded. Notice that the Class Library Reference is highlighted.

Figure 14-1

Another source of help on the .NET Framework 2.0 is the .NET Framework 2.0 SDK. At the time of
writing it’s available for downloading from http://www.microsoft.com/downloads/details
.aspx?displaylang=en&FamilyID=FE6F2099-B7B4-4F47-A244-C96D69C35DEC. If the download
moves at a later date, try a Google search using “.NET Framework 2.0 SDK site:microsoft.com” to locate
the download page.

310

Part I: Finding Your Way Around Windows PowerShell

18_946939 ch14.qxp 3/15/07 7:07 PM Page 310

You can also access information about .NET Framework 2.0 classes online at http://msdn2.microsoft
.com/en-us/library/aa139635.aspx. URLs have been changing recently. If the preceding URL
doesn’t work, visit http://msdn2.microsoft.com/en-us/netframework/default.aspx and look
for information on .NET 2.0.

There are an enormous number of .NET classes. If you are new to the .NET Framework, you should
assume that you will have to invest a significant amount of time in order to get up to speed with the
.NET Framework class library unless your .NET scripting needs are very focussed or you find a script
that suits you in a script library. When beginning to learn the .NET Framework, I suggest that you start
with a class that you might use frequently and really get to know it, as well as using your increasing
knowledge of that class to understand how the help files of the class library are laid out.

Scripting libraries are an additional source of useful information on using the .NET Framework.
Currently, Microsoft’s Scripting Center for PowerShell is located at www.microsoft.com/technet/
scriptcenter/hubs/msh.mspx.

Creating .NET Objects
The new-object cmdlet helps you create .NET objects and COM objects. It is described in the next sec-
tion. However, although you will probably use it frequently to create a new .NET object, the new-
object cmdlet is not the only way to create a new .NET object.

You can also create an object by casting a string to the desired object type, assuming that the cast is a
valid one. I describe that technique in the section following the new-object cmdlet section.

The new-object Cmdlet
The new-object cmdlet is used to create new .NET objects and new COM objects. Using the new-
object cmdlet to create COM objects is described in Chapter 13. In this section, I focus on using the
new-object cmdlet to create new .NET objects.

The new-object cmdlet supports the following parameters (in addition to the common parameters,
which are described in Chapter 6):

❑ TypeName — The fully qualified name of the .NET type to be created. It is both a required
parameter and a positional parameter.

❑ ArgumentList — Arguments to the constructor of the type specified in the Arguments param-
eter. An optional parameter.

❑ ComObject — Used only when creating COM objects.

❑ Strict — Used only when creating COM objects.

The -ComObject and -Strict parameters relate specifically to the use of the new-object cmdlet with
COM objects and is covered in Chapter 13.

311

Chapter 14: Working with .NET

18_946939 ch14.qxp 3/15/07 7:07 PM Page 311

To create a new .NET object, you simply provide a valid .NET type name as the value of the TypeName
parameter to the new-object cmdlet. The value of the TypeName parameter specifies the .NET type of
the object to be created. For example, to create a new System.DateTime object, use the following
command:

$myDate = new-object –Typename System.DateTime

When you create an object whose class belongs to the System namespace, it isn’t necessary for you to
provide the full class name. However, I suggest you do that routinely, since it will be required when you
create objects with classes in any other .NET Framework namespace.

Either of the following commands allows you to demonstrate that a new System.DateTime object has
been created.

$myDate.GetType()
$myDate.GetType().Fullname

As you can see in Figure 14-2, these commands create a new System.DateTime object and assign it to
the variable $myDate. The same technique can be used to create a new object of any other .NET type.

Figure 14-2

The System.DateTime object exists, represented by the $myDate variable, but you can’t currently do
much with it, since you didn’t assign it a datetime value when you created the object. You can’t, for
example, manually set the values of properties such as $myDate.Year to a desired value, since the Year
property and similar properties are read-only. You can inspect the properties, using a command like the
following, which I filtered to show the Year, Month, and Day properties, among others.

$myDate |
get-member -memberType property |
where-object {$_.name -match “[ymd].*”}

Figure 14-3 shows the result of running the preceding command. Notice that each of the Year, Month,
and Day properties (as well as some others) only have get() methods. In other words, you can’t set
their values.

312

Part I: Finding Your Way Around Windows PowerShell

18_946939 ch14.qxp 3/15/07 7:07 PM Page 312

Figure 14-3

An alternative approach is to look at the available methods. The following command should display all
method names beginning with g or s. That should display all get and set methods for the variable
$myDate.

$myDate |
get-member -memberType method |
where-object {$_.name -match “[gs].*”}

Executing the command on a variable of type System.DateTime doesn’t display any set methods, only
get methods. In other words, the corresponding properties are read-only.

For some objects, you won’t be allowed to create an object with only a TypeName parameter. The con-
structor(s) for the class can be expected to require one or more arguments. If you don’t supply a value
for the –argumentList parameter of the new-object cmdlet in PowerShell, then that is equivalent to
attempting to using a constructor that is not available in .NET 2.0. For example, if you attempt to create a
String object using this command:

$myString = new-object –typename System.String

and don’t use the -argumentList parameter, an error message is displayed:

New-Object : Constructor not found. Cannot find an appropriate constructor for type
System.String.
At line:1 char:23
+ $myString = new-object <<<< System.String

The constructors for a System.String object require 1, 2, 3, or 4 arguments. Omitting the
–argumentList parameter causes the new-object cmdlet to attempt to use a constructor with 0 argu-
ments, which is not supported.

In situations like these, you need to supply arguments when creating a new .NET object. For example, in
earlier commands you created a System.DateTime object, but its important properties are read-only. So,
you can’t supply new values for them once you have created the object.

313

Chapter 14: Working with .NET

18_946939 ch14.qxp 3/15/07 7:07 PM Page 313

You supply arguments when creating a new object as a comma-separated list that is the value of the
–argumentList parameter. The values you supply to the –argumentList parameter correspond to the
values to be supplied in the constructor(s) for an object. Some .NET objects have multiple overloads.
Each overload has a corresponding argument list as the value of the –argumentList parameter.

Many .NET classes support multiple constructors. The method is overloaded. It can have different
numbers of arguments, which may of different types.

To create a System.DateTime object representing a date of 2007/08/31, use either of the following com-
mands. The parentheses are not necessary, but since constructors in other languages use parentheses I
tend to use them in PowerShell, too.

$myDate2 = new-object –typename System.DateTime –argumentList (2007,08,31)

Or:

$myDate2 = new-object –typename System.DateTime –argumentList 2007,08,31

In the preceding code, under the covers, you use the constructor for System.DateTime that has three
arguments. There are 11 available constructors for System.DateTime. Only one constructor takes three
arguments. Thus, you supply three comma-separated values in the value of the –argumentList para-
meter. The arguments are Int32 values.

There is also a constructor for System.DateTime that has six arguments. You can use this to create a
System.DateTime object and specify year, month, day, hour, minute, and second values. Again, each of
those is an Int32 value. The following command creates a System.DateTime object for 20 minutes and
10 seconds past noon on 2007/08/31:

$myDate3 = new-object -typename System.DateTime -argumentList (2007,08,31,12,20,10)

You can demonstrate how each of the values in the argument list has been used by the constructor using
the following commands:

$myDate3.Year
$myDate3.Month
$myDate3.Day
$myDate3.Hour
$myDate3.Minute
$myDate3.Second

Figure 14-4 shows the results of executing the preceding commands.

314

Part I: Finding Your Way Around Windows PowerShell

18_946939 ch14.qxp 3/15/07 7:07 PM Page 314

Figure 14-4

With some classes you cannot provide arguments where you might assume that they make sense. For
example, if you want to create a System.Boolean object, you must first create the object and then, in a
separate step, assign a Windows PowerShell Boolean value to it. The following command creates a
System.Boolean object:

$myBoolean = new-object –Typename System.Boolean

By default, the System.Boolean object is created with the value False. To change it to $true, you need
to execute the following statement:

$myBoolean = $true

Figure 14-5 also shows the behavior, including the error message received when trying to use the
Arguments parameter for this object.

Figure 14-5

If you attempt to supply a value in the –argumentList parameter, you see the following error message:

New-Object : Constructor not found. Cannot find an appropriate constructor for type
System.Boolean.
At line:1 char:24
+ $myBoolean = new-object <<<< -Typename System.Boolean -argumentList $true

Be careful when creating a System.DateTime object how you supply arguments to the new-object
cmdlet. Figure 14-6 shows two forms of syntax that you might expect to work, which generate error
messages.

315

Chapter 14: Working with .NET

18_946939 ch14.qxp 3/15/07 7:07 PM Page 315

Figure 14-6

The following commands fail to work:

$myDate = new-object –Typename System.DateTime –Argumentlist 2006/12/31
$myDate = new-object –Typename System.DateTime –Argumentlist “2006/12/31”

The error message hints at the cause.

New-Object : Cannot convert argument “0”, with value: “2006/12/31”, for “.ctor” to
type “System.Int64”: “Cannot
convert value “2006/12/31” to type “System.Int64”. Error: “Input string was not in
a correct format.””
At line:1 char:21
+ $myDate = new-object <<<< -Typename System.DateTime -Argumentlist “2006/12/31”

The value you supplied for the –argumentList parameter is being interpreted as a single value, since
there are no commas to indicate multiple values. The value is interpreted as an Int64 value, which is
the only constructor for a new System.DateTime with one argument.

Potentially more dangerous is when you seem to have successfully created an object but haven’t
achieved the desired setting of properties of interest. The following statement successfully creates a
System.DateTime object for 2006/12/31:

$myDate = new-object –Typename System.DateTime –Argumentlist 2006,12,31

If you use either of the following commands (with one set of paired double quotation marks around the
arguments or paired apostrophes), an object is created, but the value of properties such as Year are not
set as you might expect, as shown in Figure 14-7. Notice that no error message is displayed.

$myDate = new-object –Typename System.DateTime –Argumentlist “2006,12,31”

Or:

$myDate = new-object –Typename System.DateTime –Argumentlist “2006,12,31”

316

Part I: Finding Your Way Around Windows PowerShell

18_946939 ch14.qxp 3/15/07 7:07 PM Page 316

Figure 14-7

If you are going to use paired quotation marks or paired apostrophes in such a command, you must cre-
ate a pair of double quotation marks or apostrophes for each argument in the list, as shown in the fol-
lowing commands:

$myDate = new-object –Typename System.DateTime –Argumentlist “2006”,”12”,”31”
$myDate = new-object –Typename System.DateTime –Argumentlist ‘2006’,’12’,’31’

When you construct the commands in that way, the object is created and its properties correctly set, as
illustrated in Figure 14-8.

Figure 14-8

The System.DateTime constructor is more complex than many. As you have seen, it’s important to be
sure what is happening when you create a new object, even if no error message is displayed.

Other Techniques to Create New Objects
The new-object cmdlet is not the only way to create new .NET objects. In fact, the technique of creating
new .NET objects that you will likely use most frequently is the implicit creation of one or more new
.NET objects when you execute a statement or pipeline.

317

Chapter 14: Working with .NET

18_946939 ch14.qxp 3/15/07 7:07 PM Page 317

The following command assigns a string value to a variable and also creates a new object of type
System.String:

$myString = “Hello world!”

If you type the following command, you can demonstrate that a System.String object has been
created:

$myString.GetType().Fullname

Similarly, if you type the following command, you create several System.Diagnostics.Process
objects held in an array:

$Processes = get-process

If you execute the following command, you can confirm the creation of a
System.Diagnostics.Process object for each element in the array:

$Processes[0].GetType().Fullname

You can also cast a string variable or string literal to another .NET type. Casting (also called type casting
or datatype conversion) is a way to convert an object of one datatype to an object of another datatype.

The value

“2006/12/31”

is a string. If you assign it to a variable, that variable is of type System.String. Figure 14-9 demon-
strates this.

Figure 14-9

You can convert what is a string value to a System.DateTime object. You can either cast the string to a
System.DateTime object and then assign that to a variable. Or you can assign a string value to a typed
variable. To create the $a object using the first approach I just described, use this syntax:

$a = [System.DateTime]”2006,12,31”

First, the string value 2006,12,31 is cast to a System.DateTime object. You can demonstrate that cast
using the following command:

([System.DateTime]”2006/12/31”).GetType().Fullname

318

Part I: Finding Your Way Around Windows PowerShell

18_946939 ch14.qxp 3/15/07 7:07 PM Page 318

Alternatively, you can specify the type of the variable and then assign a string value to it:

[System.DateTime]$a = “2006/12/31”

The string value, if it is a value that can be cast to a System.DateTime value, is used to create a new
System.DateTime object.

As shown in Figure 14-10, these techniques work to produce a new System.DateTime object like that
produced using the new-object cmdlet, as described in the preceding section.

Figure 14-10

If the string can be cast to a datetime value, then the System.DateTime object is created. If the string
can’t be cast, for example:

$a = [System.DateTime]”Hello world!”

or:

[System.DateTime]$a = “Hello world!”

then the following error message is displayed:

Cannot convert value “Hello world!” to type “System.DateTime”. Error: “The string
was not recognized
DateTime. There is a unknown word starting at index 0.”
At line:1 char:23
+ $a = [System.DateTime]” <<<< Hello world!”

However, the syntax you use when employing this technique is different from that you use with new-
object. For example, as shown in Figure 14-10, the following command:

$a = [System.DateTime]”2006/12/31”

successfully creates a System.DateTime object but, as you may recall, the command

$myDate = new-object –Typename System.DateTime –Argumentlist “2006/12/31”

produced an error. The difference is that, when you use a cast where the value between paired double
quotation marks is a String value, that value is interpreted as a date, whereas the new-object syntax
was attempting to interpret “2006/12/31” as a single argument to be parsed as a an Int64 value.

319

Chapter 14: Working with .NET

18_946939 ch14.qxp 3/15/07 7:07 PM Page 319

Inspecting Properties and Methods
Once you have created a new .NET object, you will frequently want to inspect or change properties of
that object or use its methods to carry out specific tasks. One of the major learning tasks if you are new
to the .NET Framework is to become familiar with the members of the huge variety of .NET classes. To
help you explore, PowerShell provides a cmdlet, get-member, to assist you in finding the members of
any .NET class that you need to use.

Using the get-member Cmdlet
The get-member cmdlet is very useful for finding the members of a .NET instance object. In addition to
the common parameters, it supports the following parameters:

❑ Name — Specifies what member names are to be selected. A positional parameter in position 1.
The default value is the wildcard *, which matches all members.

❑ InputObject — Specifies what object or objects are the input to the cmdlet. Used when the
get-member cmdlet is not receiving input objects from a pipeline.

❑ MemberType — Specifies the type of member to be returned. Allowed types are enumerated
later in this section.

❑ Static — Specifies that only static members are to be returned

One way to explore the members of the $myDate object is the command

$myDate |
get-member

which pipes the $myDate object to the get-member cmdlet. This is equivalent to, but simpler than, the
following command:

$myDate|
get-member –Name * -MemberType All

The preceding command returns about two screens of members of the $myDate object, depending on
how you have the Windows PowerShell window sized. If you prefer, you can page the output using the
command:

$myDate |
get-member |
more

or:

$myDate |
get-member |
out-host -paging

320

Part I: Finding Your Way Around Windows PowerShell

18_946939 ch14.qxp 3/15/07 7:07 PM Page 320

Often you will want to filter the members in some way. For example, to find only members that are
methods, use this command:

$myDate |
get-member -MemberType method

To find only properties, use the following command:

$myDate |
get-member –MemberType Property

By default, members of an object may not be returned in alphabetical order. To achieve alphabetical
order, use the sort-object cmdlet in the pipeline, as shown here:

$myDate |
get-member –MemberType Property |
sort-object Name

Figure 14-11 shows the results of executing the preceding command.

Figure 14-11

Notice that all of the properties displayed in Figure 14-11 only show get methods. This signifies that the
properties are read-only.

However, on other objects the properties may be read-write. For example, on a System.IO.FileInfo
object several of the properties are read-write, as you can demonstrate by executing the following
command:

get-childitem |
get-member –memberType Property

Figure 14-12 shows the results of executing the preceding command. Notice that several properties have
both get and set methods indicated.

321

Chapter 14: Working with .NET

18_946939 ch14.qxp 3/15/07 7:07 PM Page 321

Figure 14-12

As mentioned earlier in the section the members just described exist on instance objects. There are also
static methods that exist on the .NET classes from which instance objects are derived. To retrieve a list
of static methods for a .NET class, sorted by the value of the Name property, use the following command:

$myDate |
get-member –MemberType method –Static |
sort-object Name

The presence of a static method means that you can use the method without having to create an instance
object. Figure 14-13 shows the results of executing the preceding command. Notice that the word
static appears in the Definition column for each of the static methods listed in Figure 14-13.

Figure 14-13

Modifying the value of the MemberType parameter allows you to selectively retrieve information about
other types of members.

322

Part I: Finding Your Way Around Windows PowerShell

18_946939 ch14.qxp 3/15/07 7:07 PM Page 322

When members are displayed as determined by the default formatter a tabular layout is produced. The
Definition property is included in the display, but it may not be possible to display the full definition
of an object, as you can see with some of the definitions in Figure 14-13.

Adding the format-list cmdlet in the final step of a pipeline can help you see the full definition of a
member. Careful inspection of the definition in the lower part of the figure shows two overloads for the
TryParseExact() method with the return value specified before the method name, and the arguments
and their types listed inside paired parentheses. This information allows you to correctly construct argu-
ments for the methods without having to consult the documentation mentioned earlier in this chapter.
Admittedly, the formal documentation is easier, but if you can understand the information that is at
hand from the PowerShell command line it can save you quite a bit of time.

Compare the display produced about the TryParseExact() method, using this command:

$myDate |
get-member –Name TryParseExact –MemberType method –Static |
sort-object Name

and the output produced by:

$myDate |
get-member –Name TryParseExact –MemberType method –Static |
sort-object Name |
format-list

Figure 14-14 shows the two results.

Figure 14-14

The following are the allowed values for the -memberType parameter: AliasProperty, CodeProperty,
Property, NoteProperty, ScriptProperty, Properties, PropertySet, Method, CodeMethod,
ScriptMethod, Methods, ParameterizedProperty, MemberSet, and All.

323

Chapter 14: Working with .NET

18_946939 ch14.qxp 3/15/07 7:07 PM Page 323

Using .NET Reflection
When you use Windows PowerShell to work with .NET Framework objects, you can take advantage of
the functionality of .NET reflection. Reflection allows you to look inside an assembly and find out its
characteristics. Inside a .NET assembly information is stored that describes what the assembly contains.
This is called metadata. A .NET assembly is, in a sense, self-describing, at least if interrogated correctly.

In the .NET Framework, assemblies contain modules, modules contain classes, and classes contain mem-
bers. Reflection allows you to explore the hierarchy of assemblies, modules, classes, and members.

The System.Reflection namespace, on which .NET reflection is based, is an extensive one. A full dis-
cussion of reflection is beyond the scope of this chapter, but the following introduction should help you
get started so that you can, from Windows PowerShell, explore in detail the characteristics of .NET
classes and types that interest you.

Reflection uses the members of the System.Reflection namespace together with System.Type. In
.NET a namespace is simply a named collection.

In the following sections, I introduce several methods that you can use to find detailed information
about members, methods, and properties of a .NET class. As the following sections make clear, the
method you use will depend on your existing knowledge about the class. These methods can be com-
bined with use of the get-member cmdlet and the GetType() method, if you are starting from an
instance object and want to find out more information about its class.

Using the GetMembers() Method
The GetMembers() method returns an array of MemberInfo objects. Depending on permissions, the
method either returns all public members of a class or all members of the class. You use it with a .NET
type, not with an instance object. The GetMembers() method is used with the following general syntax:

[DotNetType].GetMembers()

The name of the .NET type must be enclosed in paired square brackets. The type name in square brack-
ets is associated with the method using dot notation.

For example, to find the members of the System.DateTime class (as opposed to the members of an
instance object), use the following command:

[System.DateTime].GetMembers()

Figure 14-15 shows one screen of the results returned by the GetMembers() method. This shows infor-
mation about the get_Hour() method. Notice its Name, get_Hour, its MemberType, Method, its Return
Type, System.Int32, that it’s a public method (the value of IsPublic is True).

324

Part I: Finding Your Way Around Windows PowerShell

18_946939 ch14.qxp 3/15/07 7:07 PM Page 324

Figure 14-15

If you want information about the GetMembers() method itself, simply omit the paired parentheses
from the command:

[System.DateTime].GetMembers

As shown in Figure 14-16, information about the characteristics of the GetMembers() method is dis-
played.

Figure 14-16

Notice that two overloads are listed in the Overload Definitions property. The second definition:

System.Reflection.MemberInfo[] GetMembers()

is the one we used earlier. It takes no arguments and returns an array of
System.Reflection.MemberInfo objects.

325

Chapter 14: Working with .NET

18_946939 ch14.qxp 3/15/07 7:07 PM Page 325

Using the GetMember() Method
The GetMember() method allows you to get information about a specified member of a class. It returns
an array of MemberInfo objects. If you know a class well, you may go directly to a command such as

[System.DateTime].GetMember(“Year”)

which displays information about the Year property of the System.DateTime class. Figure 14-17 shows
the result of executing the preceding command. You can see that the name of the member is Year, that it
is a property, that its type is System.Int32, and that you can read it but not write it. In other words, it’s
a read-only property.

Figure 14-17

If you have limited knowledge of the class, you may precede that command with a command such as

[System.DateTime].GetMembers()

to find out what members the class has, as explained in the preceding section.

The GetMember() method can also be used with wildcards to return information on multiple members.
For example, to return information on all members of the System.DateTime class beginning with the
letter D, use this command:

[System.DateTime].GetMember(“D*”)

Since you are working inside the .NET Framework, it is better to assume that the names of members are
case-sensitive. The information you see will often, but not always, depends on the case you use. As you
can see at the top of Figure 14-18, using the command

[System.DateTime].GetMember(“d*”)

returns nothing, since the names of the members have an initial uppercase letter.

326

Part I: Finding Your Way Around Windows PowerShell

18_946939 ch14.qxp 3/15/07 7:07 PM Page 326

Figure 14-18

In other situations, case is important, and depending on what case, you use you will retrieve and display
a different set of objects. Compare the results in Figure 14-19 of executing the following two commands
(the first using g* and the second using G* as the wildcard to identify member names):

[System.DateTime].GetMember(“g*”) |
format-list Name

Compare it to the results produced by the following command:

[System.DateTime].GetMember(“G*”) |
format-list Name

However, case may not matter. For example, although when you use the GetMember() method, you
must use a lowercase g to retrieve information about the get_Day() method of the System.DateTime
class, you can use either uppercase or lowercase initial letter when you use the method in PowerShell, as
you can confirm by executing both the following commands:

$myDate.get_Day()

and:

$myDate.Get_Day()

Generally, if you are working outside PowerShell, I suggest that you assume that case-sensitivity is oper-
ative. Inside PowerShell you can generally assume that case-insensitivity is operative.

327

Chapter 14: Working with .NET

18_946939 ch14.qxp 3/15/07 7:07 PM Page 327

Figure 14-19

Using the GetMethods() Method
The GetMethods() method retrieves an array of MethodInfo objects. Just as you can use the get-
member cmdlet with the MemberType property set to Method to display the methods of an instance
object using a command like:

$myDate |
get-member –memberType Method

so you can use the GetMethods() method of a class to retrieve only methods of a class. The following
command displays one screen of the method of the System.String class:

[System.String].GetMethods() |
more

The GetMethods() method displays much more information about a method than the get-member
usage mentioned above. Figure 14-20 illustrates this.

328

Part I: Finding Your Way Around Windows PowerShell

18_946939 ch14.qxp 3/15/07 7:07 PM Page 328

Figure 14-20

Using the GetMethod() Method
The GetMethod() method retrieves an array of MethodInfo objects. When you use the GetMethod()
method, you supply the name(s) of methods of interest. The GetMethods() method in the usage
described in the preceding section takes no argument and displays all methods of a class. Often you will
supply the name of a method as a string literal. Equally, as demonstrated in Figure 14-21, you can supply
the argument to the GetMethod() method as a variable.

$a = “GetType”
[System.DateTime].GetMethod($a)

Figure 14-21

The first argument to the GetMethod() method can also include a wildcard.

329

Chapter 14: Working with .NET

18_946939 ch14.qxp 3/15/07 7:07 PM Page 329

Using the GetProperties() Method
The GetProperties() method retrieves an array of PropertyInfo objects. Using the
GetProperties() method is broadly similar to using the get-member cmdlet with the value of the
memberType parameter set to Property, but it returns the properties of a class.

To produce an easily read list of the properties of the System.DateTime class, you can use the sort-
object and format-list cmdlets to display an alphabetical list of the names of the properties:

[System.DateTime].GetProperties() |
sort-object Name |
format-list Name

As you can see in Figure 14-22, this provides a more convenient way to explore the properties of a class
than displaying multiple screens of information. Once you find a desired property, use the
GetProperty() method described in the next section to display full information for that property.

Figure 14-22

You can use the GetProperties() method together with the where-object cmdlet to find all read-
only properties of a type. For example, to find the read-only properties of the System.DateTime type,
use the following code:

[System.DateTime].GetProperties() |
where-object {$_.CanWrite –eq $False} |
where-object {$_.CanRead –eq $True}

Figure 14-23 shows the first two read-only properties of the System.DateTime class.

330

Part I: Finding Your Way Around Windows PowerShell

18_946939 ch14.qxp 3/15/07 7:07 PM Page 330

Figure 14-23

Using the GetProperty() Method
The GetProperty() method returns an array of PropertyInfo objects corresponding to the property
or properties whose name is the argument to the GetProperty() method. You can use wildcards in the
first argument to the GetProperty() method.

For example, to find out the characteristics of the Year property of the System.DateTime class, use the
following command:

[System.DateTime].GetProperty(“Year”)

or:

[System.DateTime].GetProperty(‘Year’)

As you can see in Figure 14-24, the Year property is read-only. You can deduce that since the value of
CanRead is True and the value of CanWrite is False.

Figure 14-24

331

Chapter 14: Working with .NET

18_946939 ch14.qxp 3/15/07 7:07 PM Page 331

Using the GetProperty() method as shown in the preceding code is the simplest way to use the
GetProperty() method. It can also be used with the form:

[DotNetClass].GetProperty(PropertyName, BindingFlag)

There are about 20 binding flags available to you. These binding flags affect how members and types are
conducted by reflection. The binding flags are enumerated in the documentation of the BindingFlags
enumeration. Using:

[System.DateTime].GetProperty(“Year”)

is equivalent to using:

[System.DateTime].GetProperty(“Year”, Default)

but the latter syntax seems not to work in the initial release of PowerShell 1.0. The Default binding flag
indicates that no binding flags are set. The BindingFlags enumeration is used widely to control bind-
ing for classes in the System.Reflection namespace. Among the methods that use the BindingFlags
enumeration are GetMembers(), GetMember(), GetProperty(), GetProperties(), GetMethod(),
and GetMethods().

You may have an object whose members you want to find. The following approach illustrates how you
might go about it using a simple String object. For some classes that you use frequently, the pieces of
information sought will become second nature before long, but when you first begin working with
Windows PowerShell and .NET classes this is a useful way to characterize an object or class.

$myString = “Hello world!”
$myString | get-member –memberType Property
$myString.GetType()
[System.String].GetProperty(“Length”)

After creating the $myString variable in the first line, you can use the get-member cmdlet as the sec-
ond step of the pipeline to obtain all the properties of the string object. The memberType parameter spec-
ifies that you only want information about properties to be returned. The third command retrieves
information about the full name of the type of the string object represented by $myString. To obtain the
full .NET namespace name for this type, type:

$myString.GetType().Fullname

The final line of the code above uses the GetProperty() method to retrieve information about the
Length property of the System.String type. Figure 14-25 shows the results of running these state-
ments.

332

Part I: Finding Your Way Around Windows PowerShell

18_946939 ch14.qxp 3/15/07 7:07 PM Page 332

Figure 14-25

Using System.Type Members
The System.Type class — which is a basis of reflection, of course — also has members. You can use those
to find out characteristics of the type.

For example, suppose that you want to find out what assembly a type is loaded from. You can use the
following command to attempt to do that:

[System.String].Assembly

If the output from the preceding command is truncated on your system, use the format-list cmdlet to
ensure that you can see all the attributes of the Assembly property:

[System.String].Assembly |
format-list.

333

Chapter 14: Working with .NET

18_946939 ch14.qxp 3/15/07 7:07 PM Page 333

Summary
Windows PowerShell is based on .NET objects. You can create new .NET objects using the following
techniques:

❑ Using the new-object cmdlet

❑ Implicitly using a cmdlet or pipeline

❑ By explicitly casting a value to another compatible type

The get-member cmdlet allows you to explore the members of .NET instance objects, such as variables
you use in your PowerShell commands.

You can also explore the members of .NET classes by using the GetMembers(), GetMember(),
GetMethods(), GetMethod(), GetProperties(), and GetProperty() methods.

334

Part I: Finding Your Way Around Windows PowerShell

18_946939 ch14.qxp 3/15/07 7:07 PM Page 334

Part II

Putting Windows
PowerShell

to Work

Chapter 15: Using Windows PowerShell Tools for Discovery

Chapter 16: Security

Chapter 17: Working with Errors and Exceptions

Chapter 18: Debugging

Chapter 19: Working with the File System

Chapter 20: Working with the Registry

Chapter 21: Working with Environment Variables

19_946939 pt02.qxp 3/15/07 7:07 PM Page 335

19_946939 pt02.qxp 3/15/07 7:07 PM Page 336

Using Windows PowerShell
Tools for Discovery

One of PowerShell’s goals is to enable system administrators to find out what is happening on one
system or, more usefully, on large numbers of systems. In this chapter, I explore techniques that
allow you to use Windows PowerShell to find out what is happening on a system.

Of course, PowerShell isn’t the only tool available to explore a Windows system. There are many
other tools available from Microsoft and elsewhere that allow you to explore at least some aspects
of what a system is doing. PowerShell is one tool in an armory, not the whole arsenal. But it’s a
very useful tool for exploration, partly for what it can do, partly for the convenient and interactive
way that you can explore a system from the command line.

For example, if a machine has been showing sluggish performance, you might want to know what
processes are running, how much CPU time they are using, and how much memory they are
using. You can find out much of that information from Windows Task Manager, but it can be
tedious either to scroll around within that utility’s pretty constricted interface to change the
columns to be displayed, or to scroll around an uncomfortably large number of columns to see the
information you want. PowerShell lets you select and filter the information you want, display the
parts of it that interest you onscreen and, if you want, send exactly the information you chose for
your purposes to a file.

Similarly, you might want to know about services registered on a machine. Are the expected ser-
vices running, for example? Or you might want to be able from the command line to stop and start
a service.

20_946939 ch15.qxp 3/15/07 7:07 PM Page 337

Exploring System State
The Windows PowerShell shell maintains information about your system’s current state. The informa-
tion that the Windows PowerShell shell maintains about system state is summarized in the following
table.

Information Description

Current Working Location The default location used by commands such as get-childitem if
no path is explicitly provided

Error handling Defines how errors are to be handled

Namespaces Containers for names that ensure that any fully qualified name is
unambiguous

Shell aliases The aliases created by default when you start the Windows Power-
Shell shell

Shell functions The functions created by default when you start the Windows Pow-
erShell shell

Shell variables The variables created by default when you start the Windows Power-
Shell shell

The sections that follow describe how you can access information about the system state.

Using the get-location Cmdlet
The get-location cmdlet lets you find the current working location in the context of a specified
Windows PowerShell provider, which is supplied explicitly or by default. The get-location cmdlet
supports the common parameters (covered in Chapter 6) and the parameters in the following list:

❑ PSProvider — specifies which Windows PowerShell provider to query. The default value is
the current working provider.

❑ PSDrive — specifies a Windows PowerShell drive to query

❑ Stack — When specified displays the items on the current stack.

❑ StackName — Specifies the name of a stack for which the locations on the stack are to be dis-
played.

All of the preceding parameters are optional. The get-location cmdlet can be used to return PathInfo
or StackInfo objects, depending on if you are retrieving locations from a PowerShell provider or items
from a stack. When you intend the get-location cmdlet to return PathInfo objects, you either omit
all parameters or use the optional PSprovider and PSDrive parameters. When you intend the get-
location to return StackInfo objects, use the optional Stack and StackName parameters.

Not all combinations of the Provider, Drive, Stack, and StackName parameters are valid You can
use the PSProvider and PSDrive parameters together or you can use the Stack and StackName
parameters together.

338

Part II: Putting Windows PowerShell to Work

20_946939 ch15.qxp 3/15/07 7:07 PM Page 338

The simplest use of the get-location cmdlet is this:

get-location

which finds the current working location in the current provider. If you are currently using the
FileSystem provider, the preceding command will return the same result as:

get-location –PSProvider FileSystem

and:

get-location –PSProvider FileSystem –PSDrive C

If you are uncertain which is the current provider, use the get-childitem command and inspect the
first line of output. If you are using the FileSystem provider, the first line will be similar to
Directory: Microsoft.PowerShell.Core\FileSystem::C:\Documents and
Settings\Andrew Watt, depending on the current working directory.

Figure 15-1 shows the three commands in use when the current provider is the FileSystem provider.

Figure 15-1

When you specify a value for the Drive parameter, you must omit the colon character. If you include the
colon character, as here:

get-location –PSProvider FileSystem –PSDrive C:

you can expect the following error message to be displayed:

Get-Location : Cannot find drive. A drive with name ‘C:’ does not exist.
At line:1 char:13
+ get-location <<<< -PSProvider FileSystem -PSDrive C:

339

Chapter 15: Using Windows PowerShell Tools for Discovery

20_946939 ch15.qxp 3/15/07 7:07 PM Page 339

Typically, you will know, for example, which provider you are using because of the name of the drive
you are using, but if you want to display fuller information about the current location, you can create a
simple pipeline and use the format-list cmdlet, as shown here:

get-location | format-list

Figure 15-2 shows the information displayed. Notice that information about the provider is included.

Figure 15-2

Alternatively, you can use the following command to display information about the current provider:

(get-location).provider

The term “current location” is arguably misleading, since you can have a “current location” on multiple
drives at the same time. To view the current location for more than one provider, use the following
command:

get-psdrive

Notice in Figure 15-3 that the current location in all drives where you have navigated away from the root
of the drive is displayed.

Figure 15-3

When multiple current locations are displayed, you need to know which you are currently located in.

340

Part II: Putting Windows PowerShell to Work

20_946939 ch15.qxp 3/15/07 7:07 PM Page 340

Current location does, of course, apply to your current location, but it also applies to the most recently
accessed location on other PowerShell drives. As you saw in Figure 15-3, the current location on the
HKLM: drive is Software. So, if you type the command:

set-location HKLM:

or use an alias:

cd HKLM:

you are taken to the most recently used location on that drive, in this case HKLM:\Software.

Using the get-location cmdlet with the Stack and StackName parameters is associated with use of
the push-location and pop-location cmdlets, which I will describe now.

When you are repeatedly moving around a complex directory structure in the file system in Windows
Explorer, you can use the Back and Forward buttons to move through the relevant folders. The stack of
locations in PowerShell allows you to do something similar from the command line.

The push-location Cmdlet
The push-location cmdlet pushes a location on to the stack, which is a last in, first out data structure.
In addition to supporting the common parameters, the push-location cmdlet supports the parameters
in the following list:

❑ Path — The current working location is changed to the path specified using this parameter.
Unlike the –literalPath parameter, this parameter accepts wildcards.

❑ LiteralPath — A literal value of the current working location to change to. This parameter
does not accept wildcards.

❑ StackName — Specifies the stack to which the current working location or PathInfo object is
pushed.

❑ PassThru — Passes the resulting object along the pipeline.

To push the current location on to the stack and change the current working directory to C:\Windows,
use the following command:

push-location –Path C:\Windows

Once you have pushed a location on to the stack you can use the get-location cmdlet with the Stack
parameter. The following command displays the locations pushed on to the stack, in this case a single
location: C:\Documents and Settings\Andrew Watt.

get-location –Stack

You can use the command

pop-location

to return to the previous current working directory.

341

Chapter 15: Using Windows PowerShell Tools for Discovery

20_946939 ch15.qxp 3/15/07 7:07 PM Page 341

Figure 15-4 shows the results of executing the three preceding commands.

Figure 15-4

Using the push-location and get-location cmdlets becomes more helpful the more complex the
path name (and the more folders you want to move between). If, for example, I navigate down a lengthy
folder hierarchy in PowerShell to get to a folder like C:\Program Files\Microsoft SQL Server\
90\Samples\Integration Services\Package Samples\DataCleaning Sample, I tend to do so in
multiple steps. If I want to work in some other directory and return again to the DataCleaning Sample
folder I can simply push it on to the stack, using

push-location –LiteralPath C:\Windows

do whatever I want in the chosen location and then use

pop-location

to return to the previous folder, as shown in Figure 15-5.

Figure 15-5

Another option to navigate the folders is to use the up arrow key in PowerShell to run through a series
of commands like

set-location “C:\Program Files”
dir Mi*
set-location “Microsoft SQL Server”
dir
set-location 90

and so on and until I eventually get to the folder for the data cleaning sample. Using pop-location and
push-location is simpler and is more useful if I want to navigate repeatedly between the two folders.

342

Part II: Putting Windows PowerShell to Work

20_946939 ch15.qxp 3/15/07 7:07 PM Page 342

You can also use the push-location cmdlet to push a location on to a named stack. For example, sup-
pose that you wanted to work between PowerShell, SQL Server SMO (SQL Server Management Objects),
and Visual Studio 2005 project folders; you might create a named stack called PSSMO. You could work
between the folders as just described for the default stack, but pushing locations onto a named stack
means that it’s there when you want to go back to that task.

If you want a named stack to be available every time you run PowerShell, add the relevant push-
location commands to the profile file to be executed at PowerShell startup.

The following command pushes the current location, C:\Program Files\Microsoft SQL
Server\90\Samples\Engine\Programmability\SMO, on to a stack named PSSMO.

push-location –StackName PSSMO –Path “C:\PowerShellScripts”

If you want, say, to navigate to a Visual Studio folder, too, you might add the command:

push-location –Stackname PSSMO –Path “C:\Documents and Settings\Andrew Watt\My
Documents\Visual Studio 2005\Projects”

Once you have pushed the locations on to a named stack, you can use the get-location cmdlet with
the StackName parameter to retrieve the locations on that named stack. To retrieve the locations, in this
case a single location, from the named stack Fred, use this command:

get-location –Stack –StackName PSSMO

This retrieves the single location just pushed to the named stack. However, the default stack can contain
a different set of locations (which depends on how you have been using the push-location and pop-
location cmdlets recently), as you can demonstrate by using this command:

get-location –Stack

Since there is no StackName parameter in the preceding command, the default stack is used.

Figure 15-6 shows the three preceding commands being used.

Figure 15-6

343

Chapter 15: Using Windows PowerShell Tools for Discovery

20_946939 ch15.qxp 3/15/07 7:07 PM Page 343

The PSSMO stack stays there in whatever state you leave it until you are ready to use it again. When you
want to go back to work with, say, SMO and PowerShell again, you just pop a location from the stack
and away you go.

Using the -passThru parameter with the push-location parameter allows an object representing the
location specified in the Path parameter to be pushed on to the specified stack. The following command
pushes a location on to the stack named Fred and changes the current location to C:\PowerShellScripts.
Since the PassThru parameter is specified, an object is created that can be passed along the pipeline.

push-location –Path C:\PowerShellScripts -StackName Fred –PassThru |
get-member

As you can see in Figure 15-7, the object passed along the pipeline is a PathInfo object. You can manip-
ulate it in any way you want. In this example, I simply display its properties using the format-list
cmdlet. Notice, too, that the PathInfo object refers to the new location you have moved to, not the one
you moved from.

Figure 15-7

Notice, too, in Figure 15-7 that the old location has been pushed on to stack named Fred.

If you empty a stack and then attempt to execute the pop-location cmdlet, you will see an error message
similar to the following one:

Pop-Location : Cannot find location stack ‘Fred’. It does not exist or it is not a
container.
At line:1 char:13
+ pop-location <<<< -stackname Fred

The pop-location Cmdlet
The pop-location cmdlet allows you to pop a location from the default location stack or a named loca-
tion stack. The location popped from the stack, whether it’s the default stack or a named stack, becomes
the current working directory. In addition to supporting the common parameters, the pop-location
cmdlet supports the following parameters:

❑ StackName — Specifies the name of the stack to be used

❑ PassThru — Passes an object corresponding to the current working location along a pipeline

344

Part II: Putting Windows PowerShell to Work

20_946939 ch15.qxp 3/15/07 7:07 PM Page 344

Both parameters are optional.

The following command pops the location C:\ from the stack Fred. First, you may want to confirm the
locations on the stack Fred using:

get-location -StackName Fred

Then pop the location C:\ from the stack using the command:

pop-location –StackName Fred –PassThru |
format-list *

The presence of the PassThru parameter allows you to work with the PathInfo object representing the
location popped from the stack downstream in the pipeline. Figure 15-8 shows the results.

Figure 15-8

Handling Errors
Windows PowerShell has several built-in variables which define what happens when an error occurs.
You can view basic information about the error-related variables by typing:

get-childitem variable:*error* |
format-table Name, Description –auto

Figure 15-9 shows the results.

Figure 15-9

345

Chapter 15: Using Windows PowerShell Tools for Discovery

20_946939 ch15.qxp 3/15/07 7:07 PM Page 345

If you want to see exhaustive information about the error-related variables use the following command:

get-childitem variable:*error* |
format-list

I discuss errors and how you handle them in Chapter 17, so I won’t discuss this topic in detail here.

Namespaces
Windows PowerShell namespaces provide a way to ensure that names are unique. The namespaces cor-
respond to the standard PowerShell providers listed in the following table.

Standard Provider Description

Alias Provides access to the defined aliases

Certificate Provides access to defined certificates

Environment Provides access to Windows environment variables

FileSystem Provides access to Windows drives and files

Function Provides access to all defined functions

Registry Provides access to the HKLM and HKCU hives of the registry

Variable Provides access to all defined variables

I discuss the Certificate namespace in Chapter 16. I discuss working with the registry in Chapter 20. I
discuss working with environment variables in Chapter 21.

PowerShell Aliases
Another aspect of how your system behaves is the set of aliases that have been defined for Windows
PowerShell. The Alias drive lists all available aliases. To display the contents of the Alias drive,
type this:

get-childitem alias:*

To navigate to the Alias drive, type:

cd Alias:

You must include the colon character after the name of the drive to successfully navigate to the Alias
drive or an error message will be displayed.

If the Alias drive is the current drive, you need only type the following command to display all child
items of the Alias drive:

get-childitem

346

Part II: Putting Windows PowerShell to Work

20_946939 ch15.qxp 3/15/07 7:07 PM Page 346

To find the available aliases for a specific cmdlet, use the where-object cmdlet to filter the child items
of the Alias drive. For example, to find the aliases for the get-process cmdlet, use this command
(assuming that the Alias drive is the current drive):

get-childitem |
where-object {$_.Definition –eq “get-process”}

or:

get-childitem alias: |
where-object {$_.Definition –eq “get-process”}

which will work whatever the current drive.

To find all aliases for a related group of cmdlets, use the match operator with the where-object cmdlet.
For example, to find all cmdlets that have process as their noun part, use this command:

get-childitem |
where-object {$_.Definition –match “.*-process”}

The expression in the second step of the pipeline uses a regular expression pattern, .*-process. The
period, the first character in this regular expression, indicates a pattern which matches zero or more
characters. The hyphen matches literally, as does the character sequence process. In other words, the
pattern means find a match where there are zero or more characters followed by a hyphen followed by
process. In the context of the value of a Definition property, the pattern matches any alias whose
cmdlet has process as its noun part. Figure 15-10 shows the results.

Figure 15-10

Similarly, to find all aliases that have stop as the verb part of the corresponding cmdlet, use this
command:

get-childitem |
where-object {$_.Definition –match “stop-*”}

Again, the interesting part of the command is the regular expression, which is the operand to the match
operator. The pattern stop-* means that any value for the Definition property which begins with the
literal character sequence stop- will be matched. Figure 15-11 shows the results.

347

Chapter 15: Using Windows PowerShell Tools for Discovery

20_946939 ch15.qxp 3/15/07 7:07 PM Page 347

Figure 15-11

There are several cmdlets that allow you to work with aliases:

❑ export-alias — Exports a list of aliases to a file

❑ get-alias — Finds the cmdlet corresponding to an alias

❑ import-alias — Imports a list of aliases from a file

❑ new-alias — Creates a new alias-cmdlet pairing

❑ set-alias — Creates a new alias-cmdlet pairing or changes the association between an exist-
ing alias and its cmdlet or other element

When you create an alias you might want to specify options about its scope and whether or not it can be
changed. The –option parameter that is available on both the new-alias and set-alias cmdlets
allows you to set options. The supported values are:

❑ None — sets no options. The default.

❑ Readonly — You can change the alias only using the –force parameter of the set-alias
cmdlet. You can delete the alias by using the remove-item cmdlet.

❑ Constant — You cannot delete the alias nor can its properties be changed. You can specify the
Constant option only when you create an alias. You can’t use the set-alias cmdlet to set the
option to Constant for an existing alias.

❑ Private — The alias is available only in a scope specified by the value of the –scope parameter.

❑ AllScope — The alias is copied to any new scopes that are created and so is available in all
scopes.

The following command creates an alias that is Constant; in other words that you won’t be able to
delete in the PowerShell session:

new-alias CantDeleteMe clear-host -option Constant

You can’t delete that alias until you shut down that PowerShell session.

If you have aliases that you want to make available for all PowerShell sessions (either for one user or all
users), then you can add the new-alias or set-alias commands with the Constant option to the rele-
vant profile file.

348

Part II: Putting Windows PowerShell to Work

20_946939 ch15.qxp 3/15/07 7:07 PM Page 348

Be careful that you don’t make any spelling mistakes when using the Constant option, as in the follow-
ing code (clear-hsot instead of clear-host), particularly when you use a command in a profile file.
You can have a situation where the alias has been created (seemingly successfully since no error message
is displayed), but can’t be deleted and also doesn’t work because you have misspelled the cmdlet name.

new-alias CantDeleteMe2 clear-hsot -option Constant

If you attempt to use the CantDeleteMe2 alias, you will see the following error message:

Cannot resolve alias ‘CantDeleteMe2’ because it refers to term ‘clear-hsot’, which
is not recognized
t, function, operable program, or script file. Verify the term and try again.
At line:1 char:13
+ CantDeleteMe2 <<<<

If you attempt to delete it, you see this error message:

Remove-Item : Alias was not removed because alias CantDeleteMe2 is constant and
cannot be removed.
At line:1 char:12
+ remove-item <<<< alias:CantDeleteMe2

Your only option (assuming that you need the alias, for example if scripts depend on it being there) is to
close the PowerShell console and relaunch it. If the error is in a profile file, you also need to make the
necessary edit(s) there, too.

PowerShell Functions and Filters
Functions and filters are contained in the Function drive. A function is a named block of code that you
can execute by referring to its name. A filter is a named block of code intended, for example, as the con-
tent of the script block of the where-object cmdlet. To find the available functions and filters, type this
command:

get-childitem function:*

The available functions and filters depend on which function declarations are included in any profile
files that are executed when Windows PowerShell is starting up on your machine.

To view the definition of a function, you make use of its Definition property. To specify the function of
interest use the get-childitem cmdlet with the argument function:functionName. For example to
display the definition of the Prompt() function, use either of these commands:

get-childitem function:prompt |
format-list

or:

(get-childitem function:prompt).definition

Figure 15-12 shows how the function definition is displayed using each of the preceding commands.

349

Chapter 15: Using Windows PowerShell Tools for Discovery

20_946939 ch15.qxp 3/15/07 7:07 PM Page 349

Figure 15-12

PowerShell Variables
Variables are contained in the Variable drive. To view all available variables, type this command:

get-childitem variable:*

The get-childitem cmdlet finds the child items of a specified location. The location is specified as the
variable drive. The * wildcard indicates that all child items (that is all variables) are of interest.

To display information about a specified variable, supply its name after the drive name. For example, to
display information about the $Profile variable, type this command. Be careful not to include the $
sign when specifying the name of interest.

get-childitem variable:Profile

Or, if you prefer fuller information about the variable, use this command:

get-childitem variable:Profile |
format-list

Figure 15-13 shows the results of running the two commands.

Figure 15-13

350

Part II: Putting Windows PowerShell to Work

20_946939 ch15.qxp 3/15/07 7:07 PM Page 350

Exploring the Environment Variables
The Environment provider provides read/write access to Windows system environment variables from
within Windows PowerShell. The provider exposes a single env: drive. The environment variables are
exposed as if they belonged to any conventional drive. So, just as you can use the get-childitem
cmdlet or its alias dir to explore conventional drives that use the FileSystem provider, you can also
use the get-childitem cmdlet to retrieve information about environment variables. To find out what
the currently set environment variables are and sort them alphabetically, type the following command:

get-childitem env:*
sort-object Name

If env: is already the selected drive then simply type:

get-childitem *
sort-object Name

To find a named environment variable, for example the UserName environment variable, use the Path
parameter with the get-childitem cmdlet:

get-childitem env:UserName

Figure 15-14 shows the result of executing the preceding command.

Figure 15-14

In Windows PowerShell, each environment variable is a System.Collections.DictionaryEntry
object, as you can see in the lower part of Figure 15-14 or by running either of the following commands:

(get-childitem env:UserName).GetType()

or:

(get-childitem env:UserName).GetType().Fullname

Using the get-childitem cmdlet to display an environment variable works well if the value of the
Value property is short. For some environment variables, the preceding approach fails to display all of

351

Chapter 15: Using Windows PowerShell Tools for Discovery

20_946939 ch15.qxp 3/15/07 7:07 PM Page 351

the Value property. For example, the value of the Path environment variable is often long. Use the for-
mat-list cmdlet to display the full value of the Value property, as in the following command:

get-childitem env:Path |
format-list

Figure 15-15 shows the results displayed by the two approaches.

Figure 15-15

Environment variables in PowerShell are variables. So, you can assign values to them just as you would
other PowerShell variables.

To change the value of the $env:UserProfile, simply assign another value to it. The following com-
mand modifies the $env:UserProfile variable:

$env:UserProfile = “C:\Documents and Settings”

Figure 15-16 shows the variable being changed and changed back to its original value.

Figure 15-16

352

Part II: Putting Windows PowerShell to Work

20_946939 ch15.qxp 3/15/07 7:07 PM Page 352

Before experimenting with the Path variable, you might want to use the following command, so that
you can later restore the value of the $env:Path variable.

$env:path = $oldPath

The following command displays each folder in the $env:Path variable:

($env:Path).Split(‘;’)

You can use the += assignment operator to add a folder to the value of $env:Path:

$env:path += “;C:\Disposable”

Notice that a semicolon is the first character in the value assigned, since examining the existing value of
the $env:Path variable showed there was no terminating semicolon in the value.

Figure 15-17 shows an example of changing the value of the $env:path variable using the += assign-
ment operator.

Figure 15-17

At the end, the original value of the $env:Path variable was restored using the command:

$env:Path = $oldPath

Exploring the Current Application Domain
Another aspect of the environment that Windows PowerShell allows you to explore is the application
domain. An application domain is represented by the .NET System.AppDomain class. An application
domain provides isolation, unloading, and security boundaries for executing managed code. This can be
useful where a software module is running in relation to a process. If the software module crashes but is
running in a separate application domain, it is possible to unload the application domain with the
crashed software module without adversely affecting the execution of the process.

353

Chapter 15: Using Windows PowerShell Tools for Discovery

20_946939 ch15.qxp 3/15/07 7:07 PM Page 353

You can find out the current application domain using the get_CurrentDomain() method or the
CurrentDomain property of the System.AppDomain class. Either of the following commands assigns an
object representing the current domain to the variable $CurrDomain:

$CurrDomain = [System.AppDomain]::get_CurrentDomain()

or:

$CurrDomain = [System.AppDomain]::CurrentDomain

To display basic information about the current application domain, you can simply type:

$CurrDomain

Figure 15-18 shows the information about the current application domain on one of the computers I am
using to write this book.

Figure 15-18

As always, you can find the members of an object using the get-member cmdlet. The following com-
mand finds the members of the $CurrDomain object:

$CurrDomain |
get-member

Among the members of the $CurrDomain object is the GetAssemblies() method, which allows you to
find the assemblies that have been loaded in the current application domain. A convenient way to dis-
play a list of the assemblies used by the current application domain is this command:

$CurrDomain.GetAssemblies() |
format-table Fullname

Figure 15-19 shows the assemblies of the default application domain on a Windows XP machine.

354

Part II: Putting Windows PowerShell to Work

20_946939 ch15.qxp 3/15/07 7:07 PM Page 354

Figure 15-19

As you can see in Figure 15-19, one of the assemblies loaded in the current application domain is
mscorlib. You might want to explore the core library to, for example, find out how many types it
defines and what those types are. To do that, use this command:

$CoreLib = $CurrDomain.GetAssemblies() |
where-object {$_.Fullname –match “mscorlib”}

to assign the mscorlib assembly to the $CoreLib variable. The second step of the pipeline filters the
assemblies using the Fullname property of each current object in turn and determines whether it con-
tains the sequence of characters mscorlib, which, as you saw in Figure 15-19, is part of the value of the
Fullname property of the core library.

To display basic information about the core library, use this command:

$CoreLib | format-list

As you can see in Figure 15-20, the mscorlib.dll file contains the core library. You can also see the
location of the DLL.

Figure 15-20

355

Chapter 15: Using Windows PowerShell Tools for Discovery

20_946939 ch15.qxp 3/15/07 7:07 PM Page 355

To find the number of types defined by the core library, use this command:

$($CoreLib.GetTypes()).Count

The contents of the paired parentheses, $CoreLib.GetTypes(), is evaluated first, then the Count prop-
erty of that result is displayed. On the machine that I was using, 2,319 types were defined in the core
library. When you have very large numbers of results, as with the preceding command, you may wish to
filter the results using the where-object cmdlet, or use the group-object cmdlet to see which groups
the results belong to.

To display the namespaces those types belong to, use this command:

$CoreLib.GetTypes() |
group-object Namespace |
format-table -auto

As you can see in Figure 15-21, there are many namespaces used.

Figure 15-21

If you want to better understand what is happening in .NET 2.0 under the covers, you might want to
explore which classes in the System.Resources namespace are defined in the core library. To do that,
use this command:

$CoreLib.GetTypes() |
where-object {$_.Namespace –eq “System.Resources”}

356

Part II: Putting Windows PowerShell to Work

20_946939 ch15.qxp 3/15/07 7:07 PM Page 356

The version number of the core library can be used to check whether all machines have a desired version
of the .NET Framework available. At the moment, the only version of the .NET Framework 2.0 sup-
ported by Powershell V1 is .NET 2, or version 2.0.0.0. To check whether a machine has that version
loaded, use this command:

$CoreLib.Fullname –match “2.0.0.0”

The match parameter indicates that a regular expression is to be matched. Since there are no metacharac-
ters matching the start or end of a string, the literal pattern 2.0.0.0 effectively matches any string that
includes that sequence of characters.

A metacharacter is part of a regular expression that has a meaning other than its literal meaning. For
example, ^ matches the position at the start of a sequence of characters but does not match any of the
characters.

Be aware that version 2.0.0.0 of mscorlib.dll corresponds to the version of the .NET Framework 2.0 in
the folder C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727. Just be aware that they refer, using
different numbering systems, to the same version of the .NET Framework.

Later in the evolution of .NET 2.x you may want to check that some later version is loaded. You can
modify the preceding command to determine that. By including that test in a script you can, for exam-
ple, list all machines without the desired version of the .NET Framework installed.

The preceding examples are simply that — examples of a huge range of possibilities of how you might
use Windows PowerShell to explore the environment that it is running in.

Exploring Services
Using Windows PowerShell to explore what services are installed or running on your machine is
straightforward using the Windows PowerShell cmdlets designed to retrieve information about services
or to modify their behavior.

The following cmdlets relevant to services are supported by Windows PowerShell version 1.0:

❑ get-service — Retrieves a list of services

❑ new-service — Creates a new service

❑ restart-service — Restarts a stopped service or stops and restarts a running service

❑ resume-service — Resumes a suspended service

❑ set-service — Makes changes to the properties of a service

❑ start-service — Starts a stopped service

❑ stop-service — Stops a running service

❑ suspend-service — Suspends a running service

357

Chapter 15: Using Windows PowerShell Tools for Discovery

20_946939 ch15.qxp 3/15/07 7:07 PM Page 357

Using the get-service Cmdlet
The get-service cmdlet retrieves information about one or more services. In addition to the common
parameters, the get-service cmdlet supports the following parameters (all the listed parameters are
optional):

❑ Name — Specifies the name(s) of the service(s) to be retrieved. Cannot be used with the
DisplayName parameter.

❑ Include — Specifies those items on which the cmdlet will act.

❑ Exclude — Specifies those items on which the cmdlet will not act.

❑ DisplayName — Specifies the display name(s) of the service(s). Cannot be used with the
ServiceName parameter.

❑ InputObject — The ServiceController object for the service(s) about which you want to
retrieve information.

To retrieve information about all services installed on a system, simply type the following command
without specifying any parameters:

get-service

You can focus the objects returned by specifying the -Name parameter with a suitable argument. You can
use wildcards in the value of the -Name parameter. For example, to retrieve information about all ser-
vices whose service name begins with m, use the command:

Get-Service –Name m*

To display those services sorted alphabetically and with their display name, use this command:

get-service –ServiceName m* |
sort-object ServiceName |
format-table Name,DisplayName -auto

Figure 15-22 shows the results of running the preceding command.

Figure 15-22

358

Part II: Putting Windows PowerShell to Work

20_946939 ch15.qxp 3/15/07 7:07 PM Page 358

You can use the Status property of the objects returned from the get-service cmdlet together with
the where-object cmdlet to display only running or stopped processes. For example, to retrieve infor-
mation about all running services related to SQL Server 2005 (on a machine on which SQL Server 2000 or
earlier is not installed), use this command:

get-service –Name *sql* |
where-object {$_.Status –eq “Running”} |
format-table Name, DisplayName, Status -auto

Figure 15-23 shows the results of executing the preceding command. If you don’t have SQL Server
installed, modify the value of the –name parameter to another value, for example, t*.

Figure 15-23

To display all stopped SQL Server 2005 services, use this command:

get-service –Name *sql* |
where-object {$_.Status –eq “Stopped”} |
format-table Name, DisplayName, Status -auto

The -exclude parameter filters service objects as specified by the -Name parameter. The value of the -
exclude parameter can include wildcards. For example, to find all services but exclude those whose ser-
vice names begin with a through f and n through z, use the following command:

get-service –Name * -Exclude [a-fn-z]* |
sort-object Name |
format-table Name, DisplayName -auto

Figure 15-24 shows the results of running the preceding command.

359

Chapter 15: Using Windows PowerShell Tools for Discovery

20_946939 ch15.qxp 3/15/07 7:07 PM Page 359

Figure 15-24

Using the new-service Cmdlet
The new-service cmdlet allows you to create a new service. The new-service cmdlet supports the fol-
lowing parameters in addition to the ubiquitous parameters:

❑ Name — The name of the new service to be created. A required, positional parameter in position 1.

❑ BinaryPathName — The path to the executable file of the service to be created. A required,
positional parameter in position 2.

❑ DisplayName — The display name for the new service.

❑ Description — A description of the new service.

❑ StartupType — Specifies how the service behaves at system startup. Values are enumerated.
Allowed values are Automatic, Manual and Disabled.

❑ Credential — Specifies the credential that the service will start under.

❑ DependsOn — Names of other services on which the new service depends.

The following command creates an entry in the registry and in the Service database for a service named
MyLanService2:

new-service –Name MyLanService2 –BinaryPathName “C:\Windows\System32\svchost.exe –k
netsvcs”

If the new service is successfully registered, its status, service name, and display name are echoed to the
console, as shown in Figure 15-25.

360

Part II: Putting Windows PowerShell to Work

20_946939 ch15.qxp 3/15/07 7:07 PM Page 360

Figure 15-25

Using the restart-service Cmdlet
The restart-service cmdlet is used to start or restart a service. That is, if the target service is stopped,
the restart-service cmdlet starts it. If the service is running, the restart-service cmdlet stops the
service, then restarts it.

The restart-service cmdlet supports the following parameters in addition to the common parameters:

❑ Name — The name of the service to be restarted. This is a required parameter, which is a posi-
tional parameter in position 1.

❑ Include — Specifies those items on which the cmdlet will act. Wildcards are allowed.

❑ Exlude — Specifies those items on which the cmdlet will not act. Wildcards are allowed.

❑ PassThru — The object relating to the restarted service is passed along the pipeline.

❑ Force — Force a restart of services dependent on the service to be restarted.

❑ DisplayName — The display name(s) of the service(s) to be restarted.

❑ InputObject — A ServiceController object for the service to be restarted.

❑ Whatif — Describes what would happen if the command were executed. No changes are actu-
ally made.

❑ Confirm — Prompts for confirmation before executing the command.

The following command will stop and restart (or just start) the w3svc service:

restart-service w3svc

If you stop the w3svc using the command

stop-service w3svc

you can then use the command

restart-service w3svc

to restart the service.

361

Chapter 15: Using Windows PowerShell Tools for Discovery

20_946939 ch15.qxp 3/15/07 7:07 PM Page 361

Using the set-service Cmdlet
The set-service cmdlet allows you to change the properties of a service. In addition to the common
parameters, the set-service cmdlet supports the following parameters:

❑ Name — The name of the service whose properties are to be modified.

❑ DisplayName — The display name of the service whose properties are to be modified.

❑ Description — A description of the service whose properties are to be modified.

❑ StartupType — Specifies how the service behaves on system startup. Allowed values are an
enumeration: Disabled, Manual, or Automatic.

❑ Whatif — Describes what would happen if the command were executed. No changes are actu-
ally made.

❑ Confirm — Prompts for confirmation before executing the command.

The following command changes the display name of the service named MyLanService:

set-service –ServiceName MyLanService2 –DisplayName “My Lan Service”

Figure 15-26 shows the results of executing the preceding command. Notice that after execution of the
command, spaces have been introduced into the display name.

Figure 15-26

Using the start-service Cmdlet
The start-service cmdlet is used to start a service. If the service is already running the command is
ignored without error. It supports the following parameters in addition to supporting the common
parameters:

❑ Name — The name(s) of the service(s) to be started.

❑ Include — Specifies those items on which the cmdlet will act.

❑ Exclude — Specifies those items on which the cmdlet will not act.

❑ PassThru — The object created is made available to the pipeline.

❑ DisplayName — The display name of the service to be started.

362

Part II: Putting Windows PowerShell to Work

20_946939 ch15.qxp 3/15/07 7:07 PM Page 362

❑ InputObject — An array of ServiceController object for the service(s) to be started.

❑ Whatif — Describes what would happen if the command were executed. No changes are actu-
ally made.

❑ Confirm — Prompts for confirmation before executing the command.

To start the w3svc service, if it is stopped, use the following command:

start-service w3svc

As you can see in Figure 15-27, the w3svc service was stopped before the preceding command was run
and was running after the command was issued.

Figure 15-27

Using the stop-service Cmdlet
The stop-service cmdlet stops named service(s). The stop-service cmdlet supports the following
parameters in addition to the ubiquitous parameters:

❑ Name — The name(s) of the service(s) to be stopped.

❑ Include — Specifies those items on which the cmdlet will act.

❑ Exclude — Specifies those items on which the cmdlet will not act.

❑ Force — Allows the cmdlet to override dependency restrictions.

❑ PassThru — The object created is passed to the next step in the pipeline.

❑ DisplayName — The display name(s) of the service(s) to be stopped.

❑ Input - Object — An array of ServiceController object for the service(s) to be stopped.

❑ Whatif — Describes what would happen if the command were executed. No changes are actu-
ally made.

❑ Confirm — Prompts for confirmation before executing the command.

363

Chapter 15: Using Windows PowerShell Tools for Discovery

20_946939 ch15.qxp 3/15/07 7:07 PM Page 363

To stop the w3svc service, use this command:

stop-service –Name w3svc

Using the suspend-service Cmdlet
The suspend-service cmdlet suspends a running service. Not all services support being suspended. In
addition to supporting the ubiquitous parameters, the suspend-service cmdlet supports the following
parameters:

❑ ServiceName — The name(s) of the service(s) to be suspended.

❑ Include — Specifies those items on which the cmdlet will act.

❑ Exclude — Specifies those items on which the cmdlet will not act.

❑ DisplayName — The display name(s) of the service(s) to be suspended.

❑ Force — Allows the cmdlet to override dependency restrictions.

❑ PassThru — The object created is passed to the next step in the pipeline.

❑ InputObject — An array of ServiceController object for the service(s) to be suspended.

❑ Whatif — Describes what would happen if the command were executed. No changes are actu-
ally made.

❑ Confirm — Prompts for confirmation before executing the command.

To suspend the w3svc service, use this command:

suspend-service –ServiceName w3svc

Figure 15-28 shows the preceding command pausing the w3svc service.

Figure 15-28

To restart a suspended service you use this command:

restart-service –ServiceName w3svc

Attempting to start a suspended service using start-service does not work.

364

Part II: Putting Windows PowerShell to Work

20_946939 ch15.qxp 3/15/07 7:07 PM Page 364

Summary
Windows PowerShell allows you to explore aspects of the system on which it is running. You can work
with locations in multiple providers. I introduced the following cmdlets:

❑ get-location — Returns the current location

❑ push-location — Pushes a location on to the default stack or a named stack

❑ pop-location — Retrieves a location from the default stack or a named stack

You can explore aliases, functions, variables, and environment variables.

PowerShell provides several cmdlets that allow you to work with services that are registered on a system:

❑ get-service — Allows you to retrieve information about registered services

❑ new-service — Registers a service

❑ restart-service — Restarts a service

❑ set-service — Changes one or more properties of a service

❑ start-service — Starts a service

❑ stop-service — Stops a service

❑ suspend-service — Pauses a service

❑ restart-service — Restarts a paused service

365

Chapter 15: Using Windows PowerShell Tools for Discovery

20_946939 ch15.qxp 3/15/07 7:07 PM Page 365

20_946939 ch15.qxp 3/15/07 7:07 PM Page 366

Security

If you have worked through earlier chapters of this book, you will have begun to understand the
huge potential that Windows PowerShell has for inspecting and manipulating Windows comput-
ers. Any software that allows you to discover what is happening on a system and modify that sys-
tem and what is stored in its files has enormous power. That gives you power to do good. But with
power also comes risk.

The designers of Windows PowerShell have spent significant time to analyze those risks. As a
result, Windows PowerShell has an execution policy that, by default, prevents you running any
PowerShell scripts. This is part of an approach that Microsoft calls Secure by Default. When you
install the product, it is intended to be secure. This means that you need to take active steps to
enable features that you want. In PowerShell executing scripts is a prominent example.

What is the reason for the Secure by Default approach? Imagine the scenario where you have just
installed PowerShell and downloaded a script from the Internet or are sent a script by an acquain-
tance. With your possibly limited understanding of PowerShell, the risk of your running a mali-
cious script has to be there. That script could remove files from your hard drive or run other
scripts, and those scripts, in turn, could be malicious. The potential for damage is obvious. The
security policies for Windows PowerShell are designed to allow you to configure security intelli-
gently once you understand the implications of your actions, so that you find the appropriate bal-
ance between security and functionality for your business scenario(s).

If you’re going to be able to persuade your managers that installing Windows PowerShell widely
is a safe thing to do, then you need to understand what protections are in place and how to make
the appropriate adjustments to address your company’s business scenario.

21_946939 ch16.qxp 3/15/07 7:08 PM Page 367

Minimizing the Default Risk
When you install Windows PowerShell, there are several factors that reduce the chances of any mali-
cious script being run. By default, immediately after you install PowerShell you can’t run Windows
PowerShell scripts at all.

If, with a default installation of Windows PowerShell, you attempt to run a Windows PowerShell script
(in any of a number of ways, as described in this section), you run into a brick wall. Double-clicking on a
script in Windows Explorer causes the script to open in Notepad

Similarly, if you attempt to run a script by right-clicking on it and choosing the Open option from the
context menu, the script is again opened in Notepad.

Right-clicking on a script and selecting the Open With option, then selecting Windows PowerShell from
C:\WINDOWS\system32\windowspowershell\v1.0 fails to add Windows PowerShell to the list of pro-
grams that can open a .ps1 file. I also tried copying the shortcut to Windows PowerShell to the desktop
and then tried to add that shortcut to the list of programs to open the script, but the error message
shown in Figure 16-1 was displayed.

Figure 16-1

I couldn’t find a way to make a PowerShell script execute from Windows Explorer. That is a good thing,
since it protects each Windows machine from an innocent user double-clicking on a file and executing a
malicious script. This protection is permanent. As far as I’m aware there is no way of working round it.

The default behavior of opening a text editor seems to depend on a key value located at
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\.ps1. The value of PerceivedType is Text. If you mod-
ify that then a .ps1 script no longer opens in Notepad by default when it is double-clicked.

If you can’t open a Windows PowerShell script from Windows Explorer, what’s the default situation on
the PowerShell command line? To demonstrate that I created a very simple one line script:

write-host “Hello world! This script has run.”

and stored it as Hello.ps1.

If you open a Windows PowerShell command shell, navigate to the script’s directory and then attempt
to run it from the command line, you will again hit barriers. If you simply type the filename:

Hello.ps1

368

Part II: Putting Windows PowerShell to Work

21_946939 ch16.qxp 3/15/07 7:08 PM Page 368

on the command line, an error message that the script file Hello.ps1 is not recognized as a script file is
displayed, as shown in the upper part of Figure 16-2.

The term ‘Hello.ps1’ is not recognized as a cmdlet, function, operable program, or
script file. Verify the term
and try again.
At line:1 char:9
+ Hello.ps1 <<<<

Figure 16-2

If you’re aware that you can never run Windows PowerShell script by simply typing its filename, you
might well try the correct syntax:

.\Hello.ps1

but that too results in an error message being displayed:

File C:\Pro PowerShell\Chapter 16\Hello.ps1 cannot be loaded because the execution
of scripts is disabled on th
is system. Please see “get-help about_signing” for more details.
At line:1 char:11
+ .\Hello.ps1 <<<<

as shown in the lower part of Figure 16-2. The latter error message tells you that execution of scripts is
disabled on the machine (which it is) and gives you the first hint of what needs to be altered if you want
to run Windows PowerShell scripts.

Attempting to run the script using its full path and name:

&”C:\Pro PowerShell\Chapter 16\Hello.ps1”

also won’t run the script and gives the same error message.

The bottom line is that a default install of Windows PowerShell won’t run any Windows PowerShell
scripts. Not only is it not possible to execute your own scripts from the command line, but you can’t exe-
cute profile files when you start a Windows PowerShell session. On one test machine, I have a personal
profile that starts a transcript of my session. If I attempt, with the default settings, to open a Windows

369

Chapter 16: Security

21_946939 ch16.qxp 3/15/07 7:08 PM Page 369

PowerShell session, the console opens but the profile file isn’t executed. The following error message is
displayed:

File C:\Documents and Settings\Andrew Watt\My
Documents\WindowsPowerShell\Microsoft.PowerShell_profile.ps1 cannot be loaded
because the execution of scripts is disabled on this system. Please see “get-help
about_signing” for more details.
At line:1 char:2
+ . <<<< ‘C:\Documents and Settings\Andrew Watt\My
Documents\WindowsPowerShell\Microsoft.PowerShell_profile.ps1’

That’s great from a security point of view. A user can’t execute scripts and can’t inadvertently execute a
malicious profile file. But it’s pretty inconvenient if you want to make use of the functionality that
Windows PowerShell scripts offer you.

At the time of writing, it looks as if the security settings for a default install of Windows PowerShell are
stable. However, if you have problems running all scripts that the following paragraphs don’t solve for
you, type get-help about_signing, which opens the file about_signing.help.txt in
Notepad. Check for any last minute changes in the default install. That file tells you about the execution
policies current for the version of Windows PowerShell that you have installed.

To help you manage the security settings for Powershell, you can set an execution policy to define what
scripts Powershell is allowed to execute. You can set these policies either by directly editing the registry
or by using the set-executionPolicy cmdlet.

The following table summarizes the characteristics of the four available execution policies. The execu-
tion policy when you first install Windows PowerShell 1.0 is Restricted. Following the table I describe
the get-executionpolicy and set-executionpolicy cmdlets.

Execution Policy Description

Restricted No scripts or profile files are run, which is the default execution policy.
Windows PowerShell can be run interactively from the command line.

AllSigned Runs only scripts that are signed by a publisher that you trust. Protec-
tion depends on how trustworthy those you choose to trust are.

RemoteSigned Runs all scripts except those that originate from applications like
Microsoft Outlook, Internet Explorer, Outlook Express, and Windows
Messenger. The latter’s script and configuration files must be signed by
someone you trust.

Unrestricted Runs all scripts. You receive a warning when attempting to run a script
downloaded from applications like Microsoft Outlook, Internet
Explorer, Outlook Express, and Windows Messenger.

If you have attempted to run a script using a command like

.\Hello.ps1

370

Part II: Putting Windows PowerShell to Work

21_946939 ch16.qxp 3/15/07 7:08 PM Page 370

and received the error message shown in Figure 16-2, you can conclude that the execution policy on the
machine is Restricted. You can use Windows PowerShell’s get-executionpolicy cmdlet to confirm
the value of the execution policy, using the following command:

get-executionPolicy

If the execution policy is restricted, you will see a display like that in Figure 16-3. Notice that the value of
the ExecutionPolicy property is Restricted.

Figure 16-3

The get-executionpolicy cmdlet has no parameters except the common parameters that I described
in Chapter 6.

Normally, you would use the set-executionpolicy cmdlet to set the execution policy. It’s also possi-
ble to make the necessary change directly in the registry but the set-executionpolicy is much more
convenient to use.

set-executionpolicy supports the following cmdlets in addition to the common parameters
(described in Chapter 6):

❑ executionPolicy — An enumeration (Restricted, AllSigned, RemoteSigned, Unrestricted,
Default) that specifies the execution policy to be applied. A positional parameter in position 1.

❑ whatif — Allows you to see the change that would be made, but nothing is changed.

❑ confirm — Requires you to confirm that you want the change made.

If you use the –whatif parameter, you will see a message like the following, but the execution policy
has not been changed:

What if: Performing operation “Set-ExecutionPolicy” on Target “RemoteSigned”.

If you use the –confirm parameter, you will see a message like the following. Whether or not the execu-
tion policy is changed depends on your response to the message.

Confirm
Are you sure you want to perform this action?
Performing operation “Set-ExecutionPolicy” on Target “RemoteSigned”.
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is
“Y”): n

The execution policy that is most suited to you and your colleagues is likely to vary depending on what
you want to do with Windows PowerShell, your understanding of the effects of Windows PowerShell
scripts generally, your understanding of how trustworthy (or not) the signatory of a signed script is, and
so on. Choose the execution policy that lets you get the job done, while still keeping your machine safe
from malicious scripts.

371

Chapter 16: Security

21_946939 ch16.qxp 3/15/07 7:08 PM Page 371

If you are a Windows PowerShell developer, you may very well want to set the execution policy on a
development machine to Unrestricted or RemoteSigned. Both settings give you some level of protec-
tion against remote malicious scripts. The Unrestricted setting gives you a warning message before
running a remote script from the Internet but allows you the convenience to run scripts you or col-
leagues have written locally. If you map a drive to a local directory, the script may be treated as remote.
During development and debugging, the ability to run scripts multiple times is a very definite plus, pro-
vided that the author of the script(s) is known and trusted. It would be tedious to keep having to sign
scripts that are under ongoing development. The RemoteSigned setting allows you to run only scripts
signed by those you trust. Both settings, in their different ways, tell you that there is an increased risk of
running scripts written by people other than yourself (or other users of your local machine).

Be very careful when copying script fragments from the Internet (perhaps from a blog or article about a
Windows PowerShell technique). If you paste such code fragments into, say, Notepad and save a script
from there, it will be treated as a locally created script. If there is any malicious code in what you paste
into Notepad, you are essentially unprotected from it, except for reliance on your own understanding of
what the script code actually does. It is, of course, particularly dangerous to execute a complete script
whose effects you don’t fully understand that you copied and pasted into Notepad.

The following table makes suggestions for the execution policies for different types of users.

User Category Suggested Setting(s) Comment

Developer Unrestricted or RemoteSigned Security depends on developers
understanding thoroughly what
they are doing when accepting
scripts or code fragments from any-
where not their own, based on their
understanding of Windows Power-
Shell. A beginning developer needs
to be sure that he understands the
risk of using Windows PowerShell
code, which uses the more cryptic
syntax variants.

Administrator AllSigned or RemoteSigned Security depends on how valid trust
of the signatories is. An AllSigned
policy may be more advisable once
a possible phase of local script
development has stabilized.

End User Restricted or AllSigned Since the user may have little or no
understanding of Windows Power-
Shell, a Restricted policy may be
preferred.

I would emphasize that security is only as strong as the weakest link. A developer who doesn’t under-
stand that he has gaps in his understanding of Windows PowerShell is a security risk. An administra-
tor who inappropriately alters execution policies may expose business-critical machines to malicious
Windows PowerShell scripts. Enterprise-wide deployment of Windows PowerShell needs careful
thought to balance the undoubted benefits of Windows PowerShell against its potential security risks.

372

Part II: Putting Windows PowerShell to Work

21_946939 ch16.qxp 3/15/07 7:08 PM Page 372

Ultimately, security depends on multiple local factors. Not the least of which is the human factor. A
developer who has set a RemoteSigned execution policy and has encountered no malicious scripts
might be tempted by his previous experience to respond to a prompt and simply run a remotely signed
script that contains malicious code.

As always when considering security, think about physical access to a local machine. For example, if an
outsider has access to the machine, perhaps for repair or upgrading, it is important to check that security
settings for Windows PowerShell (and other software) have not been inappropriately changed.

The bottom line is that the preceding suggestions can be only that — suggestions. You need to thor-
oughly understand your business scenario before making a decision about which execution policy to use
for which users. Once you have given careful consideration to your security scenario you can make an
intelligent choice about how and whether to modify the default execution policy.

Using the set-executionpolicy cmdlet requires Administrator privileges.

To change the execution policy to Unrestricted, use this command:

set-executionpolicy -executionPolicy Unrestricted

If you want to set the execution policy to AllSigned or RemoteSigned, simply vary the value of the -
executionPolicy parameter appropriately. If you later want to reset the execution policy to
Restricted, simply supply that as the value of the -executionPolicy parameter.

Figure 16-4 shows the execution policy set to Unrestricted. As mentioned earlier, that is a setting that
should only be used by those who fully understand its implications.

Figure 16-4

If I changed the execution policy to AllSigned, the unsigned script Hello.ps1 would not run.

File C:\Pro PowerShell\Chapter 16\Hello.ps1 cannot be loaded. The file C:\Pro
PowerShell\Chapter 16\Hello.ps1 i
s not digitally signed. The script will not execute on the system. Please see “get-
help about_signing” for more
details..
At line:1 char:11
+ .\Hello.ps1 <<<<

However, the signed script HelloSigned.ps1 would run, but only after I was asked if I wanted to run
the script. Since it was signed by a certificate signed on the local machine, it was trusted. I discuss sign-
ing scripts later in this chapter.

373

Chapter 16: Security

21_946939 ch16.qxp 3/15/07 7:08 PM Page 373

Figure 16-5 shows the results of attempting to run the scripts Hello.ps1 and HelloSigned.ps1 while
the execution policy was set to AllSigned.

Figure 16-5

If you select the option [R] Run once you run the script once. If you select the option [A]Always run,
then the script HelloSigned.ps1 will run at future times on that machine without further user prompts
about whether to trust that script, assuming that the execution policy remains unchanged.

If you then change the execution policy to RemoteSigned, both Hello.ps1 and HelloSigned.ps1 run
without prompts, as shown in Figure 16-6, since neither script was downloaded from the Internet, but
rather each was created on the local machine.

Figure 16-6

If you set execution policy to Unrestricted, both locally created scripts (unsigned and signed) run
without prompting the user for a decision. Since both RemoteSigned and Unrestricted allow locally
created scripts to run, they are suitable for a developer machine where multiple executions of a script
during development and debugging are likely.

The Certificate Namespace
The certificate namespace contains certificate objects whose names are unique in that namespace. The
certificate namespace is exposed as the cert drive.

To navigate to the cert drive from any other Windows PowerShell drive, simply type:

cd cert:

374

Part II: Putting Windows PowerShell to Work

21_946939 ch16.qxp 3/15/07 7:08 PM Page 374

As with other PowerShell drives, ensure you include the final colon character when specifying the
desired drive or an error message will be displayed. Once in the cert: drive, you can, as in other
Windows PowerShell drives, use the get-childitem cmdlet to explore the content of the drive.

The cert drive has two folders inside it, LocalMachine and CurrentUser. To see those, type the follow-
ing command when Cert:\ is the current location:

get-childitem

Switch to the CurrentLocation folder using this command:

set-location CurrentUser

or:

cd CurrentUser

then type:

get-childitem

or:

dir

and you will see the second level folders shown in Figure 16-7. Notice the My folder, which is where the
certificate you will create later in this chapter will be stored.

Figure 16-7

375

Chapter 16: Security

21_946939 ch16.qxp 3/15/07 7:08 PM Page 375

When working with the cert drive from the Windows PowerShell command line, be aware that it does
not always immediately update with newly created certificates. Opening a new Windows PowerShell
command shell causes it to recognize the newly created certificate.

Signed Scripts
Windows PowerShell provides two script-signing cmdlets, the set-authenticodesignature and
get-authenticodesignature cmdlets. These enable you to sign scripts and to examine the signature
of a script, respectively.

Creating a Certificate
To use the set-authenticodesignature and get-authenticodesignature cmdlets, you need to be
able to create code-signing certificates on the machine. If you have access to a corporate code-signing
certificate, you may prefer to use that to follow through this example. If you want to distribute signed
scripts later, you will need a commercial code-signing certificate. The instructions provided here are
based on the makecert.exe utility included in the .NET Framework 2.0 SDK, which comes with Visual
Studio 2005.

Creating a certificate for Windows PowerShell using makecert.exe is a two-step process. First, navi-
gate to the location in which you installed the makecert.exe utility and create a Windows PowerShell
Local Certificate Root using the following command:

makecert -n “CN=Windows PowerShell Local Certificate Root” -a sha1 `
-eku 1.3.6.1.5.5.7.3.3 -r -sv root.pvk root.cer `
-ss Root -sr localMachine

You will be prompted for a password in a separate window. Assuming that you typed the command cor-
rectly, you will see a Succeeded message similar to the one shown in Figure 16-8.

Figure 16-8

Next, you create a code-signing certificate. Use the following command to create a certificate named Pro
Windows PowerShell Test Certificate in the My folder of the CurrentUser folder of the cert drive:

makecert -pe -n “CN=Pro Windows PowerShell Test Certificate” -ss MY -a sha1 `
-eku 1.3.6.1.5.5.7.3.3 -iv root.pvk -ic root.cer

The usage of the switches for the makecert.exe utility is described in the .NET Framework 2.0 docu-
mentation. You will be prompted to enter the password you entered in the previous step.

376

Part II: Putting Windows PowerShell to Work

21_946939 ch16.qxp 3/15/07 7:08 PM Page 376

Assuming that you have successfully created the certificate in the preceding command, navigate to the
My folder, and you will be able to verify that it’s there using the following command:

get-childitem * |
where-object {$_.Subject –match “CN=Pro Windows PowerShell”}

If you’re using another name for your certificate, modify the regular expression in the second step of the
pipeline accordingly. Figure 16-9 shows the information about the Pro Windows PowerShell Test
Certificate certificate.

Figure 16-9

Now that you have a successfully created certificate, you are in a position to explore using the set-
authenticodesignature and get-authenticodesignnature cmdlets.

The set-authenticodesignature Cmdlet
The set-authenticodesignature cmdlet places an authenticode signature in a Windows PowerShell
script file. In addition to the common parameters (described in Chapter 6), the set-authenticodesig-
nature cmdlet supports the following parameters:

❑ FilePath — Specifies the location of the script file to be signed.

❑ Certificate — Specifies the certificate to use to sign the script.

❑ IncludeChain — Specifies how much of the certificate trust chain to include in the signature.

❑ TimeStampServer — Specifies the URL of a timestamp server.

❑ Whatif — The user is informed what would have happened, but no change is made.

❑ Confirm — The user is requested to confirm the action.

The following commands show how to sign the HelloSigned2.ps1 script with the Pro Windows
PowerShell Test Certificate certificate.

Create the (for the moment) unsigned script file using this command:

set-content HelloSigned2.ps1 ‘write-host “Hello world! This script has run.”’

377

Chapter 16: Security

21_946939 ch16.qxp 3/15/07 7:08 PM Page 377

I know that it is at element [1] in the array of code-signing certificates available in the
cert:\CurrentUser\My folder. If your certificate is in a different location, amend the commands
accordingly.

$file = “C:\Pro PowerShell\Chapter 16\HelloSigned2.ps1”
$cert = @(get-childitem cert:\CurrentUser\My\ -codesign)[1]
set-authenticodesignature –Path $file -Certificate $cert

Figure 16-10 shows the script file SignedHello2.ps1 being successfully signed. Notice the change in
file length after the file has been signed.

Figure 16-10

Once a script has been signed the signature information is encoded in multiple Windows PowerShell
comments at the end of the script, as shown in Figure 16-11.

Figure 16-11

378

Part II: Putting Windows PowerShell to Work

21_946939 ch16.qxp 3/15/07 7:08 PM Page 378

The get-authenticodesignature Cmdlet
The get-authenticodesignature cmdlet retrieves a signature object corresponding to the signature
at the end of the script file.

In addition to the common parameters, the get-authenticodesignature cmdlet supports a
filePath parameter, which specifies the path to the script file whose signature is the focus of interest.

To get the signature information for the script HelloSigned2.ps1, use the following command (assum-
ing that the file is located in the directory C:\Pro PowerShell\Chapter 16):

get-authenticodesignature –filePath “C:\Pro PowerShell\Chapter 16\HelloSigned2.ps1”

As you can see in Figure 16-12, information about the certificate used to sign the script is retrieved.

Figure 16-12

Summary
Windows PowerShell is designed to be “Secure by Default.” The default settings provide protection
against executing scripts inadvertently or allowing malicious profile files to execute.

The default execution policy is Restricted. Once you make a decision to open up script execution, you
need to be aware of the possible dangers of executing scripts whose source is untrusted or whose con-
tent is not understood.

The responsibility for which scripts to run is yours!

379

Chapter 16: Security

21_946939 ch16.qxp 3/15/07 7:08 PM Page 379

You can find the current execution policy using the get-executionpolicy cmdlet. You can modify the
current execution policy by using the set-executionpolicy cmdlet. The set-executionpolicy
cmdlet supports the following values for the execution policy:

❑ Restricted (the default)

❑ AllSigned

❑ RemoteSigned

❑ Unrestricted

To sign a PowerShell script, you need a code-signing certificate. I demonstrated how to sign a script
using the makecert.exe utility and the set-authenticodesignature cmdlet. You can use the
get-authenticodesignature cmdlet to retrieve signature information from a signed cmdlet.

380

Part II: Putting Windows PowerShell to Work

21_946939 ch16.qxp 3/15/07 7:08 PM Page 380

Working with Errors and
Exceptions

One of the realities of life when you’re working with computers is that, no matter how careful you
are, something is going to go wrong somewhere — and things will go wrong sufficiently often that
it’s important to recognize and prepare for the possibility. For this reason, it makes sense to pro-
vide Windows PowerShell with functionality to monitor and respond intelligently to error condi-
tions. And that’s what the Windows PowerShell team have done.

This chapter introduces the way Windows PowerShell treats errors and shows you how to retrieve
information about errors and how you can change the way Windows PowerShell responds to
errors and exceptions.

Errors in PowerShell
In some Windows PowerShell material a distinction is drawn, conceptually and practically,
between terminating errors and nonterminating errors. Information about both types of errors is
stored in the $Error variable, which is described in the next section.

The dividing line between terminating and nonterminating errors is a little fuzzy and depends
in part on the perceptions of the author of a PowerShell or custom cmdlet. When the cmdlet
author considers that a terminating error is appropriate, then the ThrowTerminatingError()
method of the System.Management.Automation.Cmdlet class is called. If the cmdlet author
deems that a nonterminating error is appropriate, then the WriteError() method of the
System.Management.Automation.Cmdlet class is called. For cmdlets that depend on the
presence of the PowerShell runtime, the corresponding ThrowTerminatingError() and
WriteError() methods of the System.Management.Automation.PSCmdlet class are used
for terminating and nonterminating errors, respectively.

22_946939 ch17.qxp 3/15/07 7:08 PM Page 381

A terminating error, broadly, has the following characteristics:

❑ It occurs when the cmdlet author considers that processing of the current object or further
objects cannot be carried out in specified circumstances.

❑ It is used when the cmdlet author does not want processing of the current object or further
objects to be carried out in specified circumstances

❑ $Error[0] contains information about the terminating error, if it is the most recent error of
either kind.

❑ Processing stops.

❑ The terminating error can be caught by using the Trap statement (which I introduce later in this
chapter).

The characteristics of a nonterminating error, broadly, are as follows:

❑ $Error[0] contains information about the error.

❑ Processing continues.

The $? variable contains the value True if the preceding statement executed successfully. It contains the
value False if there was a terminating error in the preceding statement.

The following script, ForLoop.ps1, illustrates what happens to the $? variable when an error occurs.
In this example, script the error is caused by an attempted division by zero.

write-host ‘$?’” is $? before the for loop.”
for ($i = 5; $i -gt -5;$i--)
{write-host ‘$i’”=$i”
1/$i
write-host ‘$?’”=$?”
}
write-host ‘$?’”=$?”

The script uses a for loop to decrement a variable, $i. In each iteration of the loop, $i is decre-
mented. The integer 1 is divided by $i, and the value of the variables $? and $i are displayed as the
value of $i is decremented. When the value of the $i variable is zero, the division becomes 1/0, which
creates an error. Notice in Figure 17-1 that the value of $? immediately after the error is False, whereas
it had previously been True.

Attempted to divide by zero.
At C:\Pro PowerShell\Chapter 17\ForLoop.ps1:6 char:3
+ 1/$ <<<< i
$? =False

However, execution of the script continues for the values -1 down to -5.

382

Part II: Putting Windows PowerShell to Work

22_946939 ch17.qxp 3/15/07 7:08 PM Page 382

Figure 17-1

$Error
$Error is a Windows PowerShell system variable that contains an array of information about recent
errors. Individual errors are accessed by using array notation, for example, the command

$Error[0]

returns element 0 of the Error array, which represents the error message for the most recent error.

When the Windows PowerShell shell is first opened the command Error[0] returns nothing to the con-
sole, since there have been no errors in the PowerShell session (assuming successful startup) and the
Windows PowerShell prompt simply moves on to the next line. However, if you have run a statement
that produces an error, for example

15/0

an error message is displayed, as shown in Figure 17-2, typing the following command returns the error
message of the most recent error:

$Error[0]

383

Chapter 17: Working with Errors and Exceptions

22_946939 ch17.qxp 3/15/07 7:08 PM Page 383

Figure 17-2

If you run another command that is known to produce an error, for example, attempting to find a file

get-childitem Fred.txt

in a folder that doesn’t have such a file, the divide by zero error is now stored in $Error[1] and the
new error message about the file not being found is now returned by $Error[0]. You can demonstrate
this by typing the following commands:

$Error[0]
get-childitem Fred.txt
$Error[1]
$Error[0]

The results of running the preceding commands are shown in Figure 17-3.

Figure 17-3

If you then run another command that generates a further error, for example

nota-cmdlet

which attempts to run a nonexistent cmdlet, $Error[2] now contains the information about the divide
by zero error, and $Error[1] now contains the information about the Cannot find path error, as you
can see in Figure 17-4.

384

Part II: Putting Windows PowerShell to Work

22_946939 ch17.qxp 3/15/07 7:08 PM Page 384

Figure 17-4

Information about each error, as with everything in Windows PowerShell, is stored in an object. To find
out about the members of an error, use this command:

$Error[0] |
get-member

As you can see in Figure 17-5, there are several methods and six properties. Not all properties of an
ErrorRecord object have values that can be displayed for each error that has occurred.

Figure 17-5

Not all elements of the $Error listarray are of the same type, nor do they have the same members. You
can demonstrate that by running the following commands (which assumes the contents of $Error[2]
and $Error[1] shown in Figure 17-4).

$Error[1] |
get-member -memberType Property
$Error[2] |
get-member -memberType Property

Figure 17-6 shows the results of executing the preceding commands.

385

Chapter 17: Working with Errors and Exceptions

22_946939 ch17.qxp 3/15/07 7:08 PM Page 385

Figure 17-6

Just after running the script ForLoop.ps1 used earlier in this chapter, $Error[0] contains information
about a divide by zero error. As you can see in Figure 17-7, the Exception property holds the error mes-
sage and the InvocationInfo property contains information associating the occurrence of the error
with the script ForLoop.ps1. To see that information, execute these commands:

$Error[0].Exception |
format-list *
$Error[0].InvocationInfo |
format-list *

Figure 17-7

You can display similar but more succinct error information using the command:

$Error[0] |
format-list *

Using the force parameter of the format-list cmdlet, you can display all six properties, as shown in
Figure 17-8.

386

Part II: Putting Windows PowerShell to Work

22_946939 ch17.qxp 3/15/07 7:08 PM Page 386

Figure 17-8

The number of errors contained in $Error is defined in the $MaximumErrorCount variable. By default,
256 errors are stored before older errors begin to be discarded. You can increase the value displayed by
$MaximumErrorCount by using a command like the following:

$MaximumErrorCount = 2000

PowerShell prevents you decreasing the value of $MaximumErrorCount below 256. For example, the
command

$MaximumErrorCount = 255

produces the following error message:

Cannot validate because of invalid value (255) for variable MaximumErrorCount.
At line:1 char:19
+ $MaximumErrorCount <<<< = 255

You can clear the content of $Error by using the following command:

$Error.Clear()

You can delete a range of values in $Error by using the RemoveRange() method. The arguments are
the starting index and the number of elements to be removed. For example, the following command
removes 10 values starting at index 3:

$Error.RemoveRange(3,10)

To clear $Error using the RemoveRange() method, you can use this command:

$Error.RemoveRange(0,$Error.Count)

although $Error.Clear() is simpler.

387

Chapter 17: Working with Errors and Exceptions

22_946939 ch17.qxp 3/15/07 7:08 PM Page 387

Using Error-Related variables
Windows PowerShell provides several variables that are relevant to how you work with errors. To view
error-related variables execute this command:

get-variable *error*

Figure 17-9 shows the error-related variables.

Figure 17-9

To view further information on the error-related variables, use this command:

get-variable *error* |
format-list

Figure 17-10 shows the results of executing the preceding command.

Notice that the Constant option applies to $Error (but none of the others), which means that you can’t
delete $Error. If you attempt to delete it using the following command

remove-item variable:Error

the following error message is displayed:

Remove-Item : Cannot remove variable Error because it is constant or read-only. If
the variable is read-only, try the operation again specifying the Force option.
At line:1 char:12
+ remove-item <<<< variable:Error

In principle, you can delete other error-related variables, although I can’t see a good reason why you
would benefit from doing that.

388

Part II: Putting Windows PowerShell to Work

22_946939 ch17.qxp 3/15/07 7:08 PM Page 388

Figure 17-10

Using the $ErrorView variable
PowerShell supports two views on to the elements of $Error, called NormalView and CategoryView.
Not surprisingly, the default view is Normal. The CategoryView option is intended to provide succinct,
highly structured informative error information. This would be useful, for example, in a high-volume
setting where the likely causes of error are well known.

To see the current setting of the $ErrorView variable, type this command:

$ErrorView

The supported values are NormalView and CategoryView.

The CategoryView view is generally succinct and well structured. Compare the results in Figure 17-11
of executing the following to find a nonexistent file:

get-childitem Fred.txt

389

Chapter 17: Working with Errors and Exceptions

22_946939 ch17.qxp 3/15/07 7:08 PM Page 389

Figure 17-11

Sometimes the information displayed in CategoryView view is less informative than that in the Normal
view. Compare the information displayed when executing the following command, as shown in Figure 7-12:

1 / 0

Figure 17-12

In NormalView, the following error message is displayed:

Attempted to divide by zero.
At line:1 char:3
+ 1/0 <<<<

In CategoryView, view the error message is more succinct but not particularly informative:

NotSpecified: (:) [], ParentContainsErrorRecordException

Using the $ErrorActionPreference variable
The $ErrorActionPreference variable specifies the action to take in response to an error occurring.
The following values are supported:

❑ SilentlyContinue — Don’t display an error message continue to execute subsequent com-
mands.

❑ Continue — Display any error message and attempt to continue execution of subsequence
commands.

❑ Inquire — Prompts the user whether to continue or terminate the action

❑ Stop — Terminate the action with error.

390

Part II: Putting Windows PowerShell to Work

22_946939 ch17.qxp 3/15/07 7:08 PM Page 390

Set the $ErrorActionPreference variable to SilentlyContinue by using this command:

$ErrorActionPreference = “SilentlyContinue”

As you can see in Figure 17-13, the ForLoop.ps1 script runs to completion without displaying any error
message. The error message is available in $Error[0] if you want to see it.

Figure 17-13

The default value of $ErrorActionPreference is Continue. When that is the setting, the appearance
when running ForLoop.ps1 is the same as that shown in Figure 17-1.

When you set the value of $ErrorActionPreference to Inquire, execution stops when the error
occurs, the error is described, and the user is prompted to decide what to do next:

Action to take for this exception:
Attempted to divide by zero.
[C] Continue [I] Silent Continue [B] Break [S] Suspend [?] Help (default is
“C”):

Figure 17-14 shows the results of executing ForLoop.ps1 with $ErrorActionPreference set to
Inquire.

391

Chapter 17: Working with Errors and Exceptions

22_946939 ch17.qxp 3/15/07 7:08 PM Page 391

Figure 17-14

When the value of $ErrorActionPreference is set to Stop, the error message is displayed, and execu-
tion of the script stops, as shown in Figure 17-15.

Figure 17-15

Trap Statement
The trap statement allows you to take control of what happens when an error occurs.

Don’t attempt to use the trap statement to trap nonterminating errors. It doesn’t work for those.

The script TrappedForLoop.ps1 writes a custom message to the console when an exception occurs and
specifies that execution is to continue:

for ($i = 5; $i –gt -2; $i--)
{
trap {write-host “This is a custom error message.”;continue}

392

Part II: Putting Windows PowerShell to Work

22_946939 ch17.qxp 3/15/07 7:08 PM Page 392

write-host ‘$i’”=$i”
1/$i
write-host ‘$?’”=$?”
}
write-host “This statement comes after the for loop.”

As the value of $i is decremented, eventually the statement 1/$i becomes 1/0, which causes an error.
The error is trapped and the custom error message is displayed, as you can see in Figure 17-16. Even
when the $ErrorActionPreference is set to Stop, execution of the for loop continues, as does execu-
tion of statements following the for loop.

Figure 17-16

The following script, BlockedWrite.ps1, writes sample text to four files (using redirection), sets the file
Test3.txt to read-only, then attempts to append further text to Test3.txt.

Trap {write-host “You can’t write to a read-only file.”}
“This is file 1” > Test1.txt
“This is file 2” > Test2.txt
“This is file 3” > Test3.txt
“This is file 4” > Test4.txt
attrib +r Test3.txt
“Add to file 3” >> Test3.txt

Execute the script using the following command:

.\BlockedWrite.ps1

As you can see in Figure 17-17, the custom error message specified in the trap statement is displayed.
The normal error message is also displayed following the custom error message. This is because the
default behavior of a Trap statement is Return.

393

Chapter 17: Working with Errors and Exceptions

22_946939 ch17.qxp 3/15/07 7:08 PM Page 393

Figure 17-17

If you want to take any custom action and suppress the normal error message, use the Continue state-
ment in the trap statement’s script block. Remember to separate statements on a single line using a
semicolon. The script (which includes the Continue statement) BlockedWrite2.ps1 is shown below.
Before running the script manually, delete the test files after making Test3.txt read-write using the
following command:

attrib -r Test3.txt

If you don’t delete the files (or set the file to read-write), you will see the error message twice when you
execute the script — once for the fourth line of the script and once for the final line — since both attempts
to write to Test3.txt fail because it was set earlier to read-only by the script BlockedWrite.ps1.

Trap {write-host “You can’t write to a read-only file.”;Continue}
“This is file 1” > Test1.txt
“This is file 2” > Test2.txt
“This is file 3” > Test3.txt
“This is file 4” > Test4.txt
attrib +r Test3.txt
“Add to file 3” >> Test3.txt

Figure 17-18 shows the result of running the script BlockedWrite2.ps1.

Figure 17-18

In the following two examples, don’t delete Test3.txt before attempting to run either script. Both
attempts to write to the file in each script should fail. The aim is to show the difference in behavior with
multiple errors with a continue or break statement in the statement block of a trap statement.

In the following script, BlockedWrite3.ps1, I have added write-host statements to show you that
the statement immediately before and immediately after the two attempts to write to Test3.txt have
been reached.

394

Part II: Putting Windows PowerShell to Work

22_946939 ch17.qxp 3/15/07 7:08 PM Page 394

Trap {write-host “You can’t write to a read-only file.”;Continue}
“This is file 1” > Test1.txt
“This is file 2” > Test2.txt
write-host “The first write to Test3.txt hasn’t happened yet.”
“This is file 3” > Test3.txt
write-host “The first write to Test3.txt is over.”
“This is file 4” > Test4.txt
attrib +r Test3.txt
write-host “The append to Test3.txt is about to be attempted.”
“Add to file 3” >> Test3.txt
write-host “The append to Test3.txt is over.”

Notice the Continue statement in the Trap statement. Figure 17-19 shows the results. As you can see,
both writes to Test3.txt have been attempted, as demonstrated by the execution of the write-host
statements immediately before and after each of the attempted writes.

Figure 17-19

However, if you modify the Trap statement so that Break replaces Continue, execution stops after the
first error. This is BlockedWrite4.ps1, which includes the Break statement in the Trap statement.

Trap {write-host “You can’t write to a read-only file.”;Break}
“This is file 1” > Test1.txt
“This is file 2” > Test2.txt
write-host “The first write to Test3.txt hasn’t happened yet.”
“This is file 3” > Test3.txt
write-host “The first write to Test3.txt is over.”
“This is file 4” > Test4.txt
attrib +r Test3.txt
write-host “The append to Test3.txt is about to be attempted.”
“Add to file 3” >> Test3.txt
write-host “The append to Test3.txt is over.”

As you can see in Figure 17-20, when Break is used in the Trap statement the code in the Trap state-
ment’s script block is executed (in this case displaying the custom error message), the normal error mes-
sage is displayed, then execution stops. The statement

write-host “The first write to Test3.txt is over.”

is never executed, nor are any of the later statements in the script.

395

Chapter 17: Working with Errors and Exceptions

22_946939 ch17.qxp 3/15/07 7:08 PM Page 395

Figure 17-20

The trap statement also supports an option so that the statement’s script block is executed only in
response to a specific type of error.

The write-error statement allows you to output a customized error message when an error occurs.
The type of error also changes when you use the write-error cmdlet.

Run the TrappedForLoop.ps1 script again. Then run this command:

$Error[0] |
format-list * -force

Figure 17-21 shows the results. Notice that the exception is a
System.Management.Automation.RuntimeException.

Figure 17-21

Next run TrappedForLoop2.ps1, where a write-error statement has been added to the statement block
of the trap statement:

for ($i = 5; $i –gt -2; $i--)
{
trap {write-host “This is a custom error message.”; write-error “You attempted

to divide by zero!!!”;continue}
write-host ‘$i’”=$i”
1/$i

396

Part II: Putting Windows PowerShell to Work

22_946939 ch17.qxp 3/15/07 7:08 PM Page 396

write-host ‘$?’”=$?”
}
write-host “This statement comes after the for loop.”

Run the script:

.\TrappedForLoop2.ps1

then run this command:

$Error[0] | format-list * -force

Figure 17-22 shows the results. Notice that the exception is now a
Microsoft.PowerShell.Commands.WriteErrorException and that the custom error message speci-
fied in the write-error statement is displayed with the same appearance as a built-in error.

Figure 17-22

Using Common Parameters
Many cmdlets support the common parameters ErrorAction and ErrorVariable. These are particu-
larly relevant to the situation where errors can occur or are likely to occur.

Using the ErrorAction Parameter
The –errorAction parameter specifies the error action for a cmdlet. It overrides the value set in the
$ErrorActionPreference variable.

397

Chapter 17: Working with Errors and Exceptions

22_946939 ch17.qxp 3/15/07 7:08 PM Page 397

To show how you can use the ErrorAction parameter, enter these commands with your current work-
ing folder set to one that does not contain a file called Fred.txt.

First confirm the value of $ErrorActionPreference by running the following command:

$ErrorActionPreference

Then run each of the following commands:

get-childitem Fred.txt –ErrorAction SilentlyContinue ; write-host “We got here”
get-childitem Fred.txt –ErrorAction Continue; write-host “We got here”
get-childitem Fred.txt –ErrorAction Stop; write-host “We got here”
get-childitem Fred.txt –ErrorAction Inquire; write-host “We got here”

The commands use the four possible enumerated values for the ErrorAction parameter —
SilentlyContinue, Continue, Stop, and Inquire. Figure 17-23 shows the results with blank lines
added to help readability.

Figure 17-23

Notice that the value of $ErrorActionPreference is Continue.

With the ErrorAction parameter set to SilentlyContinue, the error message is not displayed and
execution continues to the write-host statement. With the ErrorAction parameter set to Continue,
the error message is displayed and execution continues to the write-host statement. With the value of
the ErrorAction parameter set to Stop execution stops, a message is displayed about stopping, the
usual error message is then displayed, but execution of the write-host statement does not take place.
With the value of the ErrorAction parameter set to Inquire, the user is asked what to do. If the user
selects the Y (Yes) option, then it is as if ErrorAction were set to Continue. If the user selects the H
(Halt) option, then execution is halted, a message is displayed, which is a little different from the mes-
sage with ErrorAction, having the value of Stop. The write-host statement is not executed.

398

Part II: Putting Windows PowerShell to Work

22_946939 ch17.qxp 3/15/07 7:08 PM Page 398

Using the ErrorVariable Parameter
The ErrorVariable parameter allows you to specify a variable to hold information about any error(s)
relating to execution of a cmdlet.

The script ErrorVariable.ps1 shows you simple usage of the ErrorVariable parameter:

$ErrorActionPreference = “SilentlyContinue”
$file = read-host “Enter a file name”
get-childitem $file -ErrorVariable myErrorVar

if ($myErrorVar.Count -gt 0)
{
write-host “I couldn’t find the file $file.”
}
else
{
write-host “`nI found the file $file.”
}
$myErrorVar |format-list * -force
$ErrorActionPreference = “Continue”

To suppress any system error messages, I set the value of the $ErrorActionPreference to
SilentlyContinue at the beginning of the script. I set it back to its default value of Continue when the
script concludes.

The script asks the user to supply a filename which is then opened. The command

get-childitem $file -ErrorVariable myErrorVar

specifies that the error variable for the get-childitem cmdlet is $myErrorVar. Thus, if there is an
error, Windows PowerShell sends the details to $myerrorvar.

Be careful not to include the $ sign when specifying the name of the error action variable.

Figure 17-24 shows the results after entering the name of a nonexistent file, Fred.txt, and then the
result after entering the name of a file that does exist, Test3.txt.

Figure 17-24

399

Chapter 17: Working with Errors and Exceptions

22_946939 ch17.qxp 3/15/07 7:08 PM Page 399

The write-error Cmdlet
The write-error cmdlet writes an error object and passes it to the pipeline. In addition to supporting
the common parameters, the write-error cmdlet supports the following parameters:

❑ Message — Text that describes the error. Can be used in place of the Exception and
ErrorRecord parameters. A required parameter.

❑ Category that — The category of error that the error is associated with. An optional parameter.

❑ ErrorId — The error ID associated with the error. An optional parameter.

❑ TargetObject — The object associated with the error. An optional parameter.

❑ RecommendedAction — The action recommended in response to the error. An optional
parameter.

❑ CategoryActivity — A description of the activity that overrides the ErrorCategoryInfo
default. An optional parameter.

❑ CategoryReason — A text description of the reason to override the ErrorCategoryInfo
default. An optional parameter.

❑ CategoryTargetName — The Target Name to override the ErrorCategoryInfo default. An
optional parameter.

❑ CategoryTargetType — The Target Type to override the ErrorCategoryInfo default. An
optional parameter.

❑ Exception — The type of the error’s exception. If used instead of the Message and
ErrorRecord parameters, it is a positional parameter in position 1.

❑ ErrorRecord — An error record containing information about the error. If used instead of the
Message and Exception parameters it is a positional parameter in position 1.

The permitted values of the Category parameter are listed here:

❑ NotSpecified — An error has occurred which isn’t appropriate for another category.

❑ CloseError — An error that occurs when closing.

❑ DeadlockDetected — A deadlock has been detected.

❑ DeviceError — A device has reported an error.

❑ FromStdError — An error has been reported to STDERR.

❑ InvalidArgument — An invalid argument has been specified.

❑ InvalidData — An invalid type has been specified.

❑ InvalidOperation — An invalid operation has been requested.

❑ InvalidResult — An invalid result has been returned.

❑ InvalidType — An invalid type has been specified.

❑ MetadataError — There is an error in metadata.

400

Part II: Putting Windows PowerShell to Work

22_946939 ch17.qxp 3/15/07 7:08 PM Page 400

❑ NotImplemented — A referenced API has not been implemented.

❑ NotInstalled — An item has not been installed.

❑ ObjectNotFound — An object cannot be found.

❑ OpenError — An error that occurs when opening.

❑ OperationStopped — An operation has stopped.

❑ OperationTimeout — An operation has timed out.

❑ ParserError — An error has occurred during parsing.

❑ PermissionDenied — An operation has been attempted without adequate permissions.

❑ ReadError — An error that occurs when reading.

❑ ResourceBusy — A resource is busy.

❑ ResourceExists — A resource already exists.

❑ ResourceUnavailable — A resource is unavailable.

❑ SecurityError — A security error has occurred.

❑ SyntaxError — There is a syntax error in a command.

❑ WriteError — An occur that occurs when writing.

Summary
Errors in Windows PowerShell are stored in the $Error variable. The default size is 256 errors. You can
increase the size of $Error if desired.

Errors can be described as terminating errors and nonterminating errors. The distinction is not clear-cut.

The $ErrorActionPreference variable allows you to specify a global preference for PowerShell
behavior when an error occurs.

The $ErrorView variable allows you to specify two views of error information.

Two of the common parameters are relevant to errors:

❑ The –errorAction paramter overrides for an individual cmdlet the value in
$ErrorActionPreference.

❑ The –errorVariable parameter allows you to store error information in a variable other than
$Error.

The write-error cmdlet allows you to create custom error messages.

401

Chapter 17: Working with Errors and Exceptions

22_946939 ch17.qxp 3/15/07 7:08 PM Page 401

22_946939 ch17.qxp 3/15/07 7:08 PM Page 402

Debugging

Writing error-free code is the aspiration of pretty much every programmer. If you’ve spent any sig-
nificant amount of time writing programs of any kind, you’ll know that writing error-free code
becomes increasingly difficult as the size of your code increases.

When you use Windows PowerShell on the command line, identifying many errors is simply a
matter of spotting some slight syntax error. But Windows PowerShell is a scripting tool as well as a
command line shell, so as with any significant programming language, you will need to carry out
at least some debugging of your code when writing Windows PowerShell scripts. The longer and
more complex your PowerShell scripts become, the more demanding it is to identify and fix all the
errors that are present in them.

Debugging is the process of trying to identify and correct bugs in PowerShell scripts or com-
mands. Often during initial development of a script you will observe undesired behavior of some
kind. Spotting what is wrong can be easy or it can be hugely time-consuming and sometimes frus-
trating.

You might fail to spot some types of errors because you don’t test edge conditions. Until users run
your scripts in conditions you hadn’t anticipated, the code seems to run correctly. When users
bring an unanticipated combination of conditions to code execution, previously unknown errors
may surface. I don’t propose to explore those issues in depth in this chapter but will focus primar-
ily on issues that are specific to the debugging of PowerShell and its scripts.

Handling Syntax Errors
Most people who write code introduce syntax errors from time to time. When you’re learning a
new language or switching frequently between languages, syntax errors can become frequent.
Windows PowerShell gives you some support in interpreting the syntax errors you introduce but,
as with many other languages, you can expect some error messages to be only marginally helpful
at best.

23_946939 ch18.qxp 3/15/07 7:09 PM Page 403

Simple syntax errors, such as misspelling a cmdlet name, are easily dealt with. If you type:

write-hos “Hello world!”

instead of:

write-host “Hello world!”

you will receive an error message about the command not being recognized, as shown in Figure 18-1.

The term ‘write-hos’ is not recognized as a cmdlet, function, operable program, or
script file. Verify the term
and try again.
At line:1 char:10
+ write-hos <<<< “Hello world!”

Figure 18-1

You know you were trying to type a cmdlet name, so it’s that part of the error message that you should
focus on. The error message doesn’t tell you what the correct cmdlet name is, but the error message
points you in the right direction — taking a close look at the command you used. Similar issues arise if
you mistype the name of a function or script.

At other times, you will receive the same error message but not due to the supposed failure to recognize
a script as a script. The script file, Hello.ps1, shown below, is used in the next example.

write-host “Hello world!”

If you attempt to run the script from the current directory (in my case C:\Pro PowerShell\Chapter
18) you see an error message that the script file is not recognized as a script, as shown in Figure 18-2.

Figure 18-2

The error message is:

The term ‘Hello.ps1’ is not recognized as a cmdlet, function, operable program, or
script file. Verify the term and try

404

Part II: Putting Windows PowerShell to Work

23_946939 ch18.qxp 3/15/07 7:09 PM Page 404

again.
At line:1 char:9
+ Hello.ps1 <<<<

You know it is a script and there is nothing wrong with the (very simple) code in the script, as you can
demonstrate by moving to the parent directory and executing the script using the following command:

&”Chapter 18\Hello.ps1”

The & in this context means execute what follows.

The problem is that, for perceived security reasons, a Windows PowerShell script in the current directory
can be run by typing:

.\Hello.ps1

rather than typing:

Hello.ps1

Once you get beyond the simplest commands, the complexity increases and other error messages are
potentially more difficult to work out. For example, in a for loop Windows PowerShell doesn’t allow
you to put a semicolon after the third component in the parentheses of the for statement. The script
ForLoopWithError.ps1 is shown here:

write-host ‘$?’” is $? before the for loop.”
for ($i = 5; $i > 0; $i--;)
{

write-host ‘$i’”=$i”
1/$i
write-host ‘$?’”=$?”
}
write-host “This statement comes after the while loop.”
write-host ‘$?’”=$?”

As you can see in Figure 18-3, the error message

Missing closing ‘)’ after expression in ‘for’ statement.
At C:\Pro PowerShell\Chapter 18\ForLoopWithError.ps1:2 char:26
+ for ($i = 5; $i > 0; $i--; <<<<)

indicates that a parenthesis is missing, but inspection of the second line of the script shows the parenthe-
ses to be correctly paired.

Figure 18-3

405

Chapter 18: Debugging

23_946939 ch18.qxp 3/15/07 7:09 PM Page 405

If you remove the third semicolon on the second line so that it reads

for ($i = 5; $i > 0; $i--)

and run the script ForLoop.ps1, shown below, it runs as designed.

write-host ‘$?’” is $? before the for loop.”
for ($i = 5; $i > 0; $i--)
{

write-host ‘$i’”=$i”
1/$i
write-host ‘$?’”=$?”
}
write-host “This statement comes after the while loop.”
write-host ‘$?’”=$?”

A particularly puzzling type of error is the error — or more precisely the unexpected behavior — for
which you receive no error message at all. Take a look at the script ForLoopWithUnreportedError
.ps1 shown next, and see if you can spot the problem before reading the explanation.

write-host ‘$?’” is $? before the for loop.”;
for ($i = 5; $i > 0; $i--)
{
write-host ‘$i’”=$i”
1/$i
write-host ‘$?’”=$?”
}
write-host “This statement comes after the for loop.”
write-host ‘$?’”=$?”

Also, if the script is run in a newly opened PowerShell command shell, there is no error message at all,
as shown by executing the statements:

$Error[0]

or:

$Error

Figure 18-4 shows the appearance when the code is run. Notice that the statement block in the for loop
never runs.

Figure 18-4

406

Part II: Putting Windows PowerShell to Work

23_946939 ch18.qxp 3/15/07 7:09 PM Page 406

The “error” of course isn’t an error at all! It’s simply a use of syntax that works in several languages but
doesn’t work in the same way in Windows PowerShell:

for ($i = 5; $i > 0; $i--)

There is no > operator (meaning greater than) in Windows PowerShell. In Windows PowerShell, the >
operator means redirection. This is confirmed if you run the following statements:

get-childitem 0
get-content 0

As shown in Figure 18-5, a file named 0 has been created, and it contains the value of 5 (the value of the
variable $i at the time of using the > redirection operator).

Figure 18-5

The $i > 0 has been correctly interpreted by the Windows PowerShell parser as meaning that the value
of the variable $i should be redirected to the file named 0 in the current location. And that is what
Windows PowerShell did. If you change the offending line to

for ($i = 5; $i -gt 0; $i--)

and use the –gt comparison operator correctly, the script executes in the way intended.

The preceding behaviour is what happens with the Windows PowerShell debug facilities turned off.
When the Windows PowerShell debugging functionality is turned on, the information displayed to you
changes significantly.

When you use variable names, be careful that you don’t include the $ sign in the name. For example, in
the statement

get-childitem Fred.txt –errorVariable $myErrorVar

you are not creating the variable $myErrorVar; in fact, you are not creating any error variable. If you
make the preceding mistake instead of writing the following correct code:

get-childitem Fred.txt –errorVariable myErrorVar

then no variable $myErrorVar is created. If you then go on to use that nonexistent variable (that you
assume exists) in some conditional logic, you are likely to get surprising and possibly frustrating results.

407

Chapter 18: Debugging

23_946939 ch18.qxp 3/15/07 7:09 PM Page 407

Some errors due to mistyping can lead to errors that are difficult to find. In isolation, you can probably
spot fairly easily the error in the following statement:

$a = $ErrorActionPrefernce

I have omitted a single letter from $ErrorActionPreference, instead misspelling it as
$ErrorActionPrefernce. There is no variable with the misspelled name, yet you see no error message
when you execute the preceding statement, Even with $ErrorActionPreference (correctly spelled) set
to Stop, no error is displayed and nothing is added to $Error.

Figure 18-6 shows the results of executing the preceding code.

Figure 18-6

The set-PSDebug Cmdlet
The set-PSDebug cmdlet turns Windows PowerShell script debugging on and off.

Members of the Windows PowerShell team have indicated a full script debugger is likely to be available
in a future version of Windows PowerShell. As far as I am aware, no indication has been given of which
version or of a likely timescale.

The set-PSDebug cmdlet supports the common parameters (described in Chapter 6) and the following
parameters. Each of the listed parameters is optional. All are named parameters.

❑ Trace — Specifies how tracing is to be carried out. Permitted values for this property are the
Int32 values 0, 1, and 2.

❑ Step — Step through code one statement at a time.

❑ Strict — Specifies that an exception should be thrown if a variable is referenced before it has
been assigned a value.

❑ Off — Turn debugging off.

The values of the Trace parameter have the meanings shown in the following table.

Trace Parameter Value Meaning

0 No debugging.

1 Trace script lines.

2 Trace script lines, variable assignments, function calls, and scripts.

408

Part II: Putting Windows PowerShell to Work

23_946939 ch18.qxp 3/15/07 7:09 PM Page 408

The following commands show what debug information is (or is not) displayed when the simple assign-
ment statement

$a = 10

is executed multiple times. First the statement is run with debug set to off; then, in succession, debug is
set to Trace 0, Trace 1, Trace 2, and, finally, Off again.

As you can see in Figure 18-7, Trace 0 is the same as setting debugging to Off. No debugging informa-
tion is displayed. When debugging is set to Trace 1, the Windows PowerShell statement is echoed to the
console. When debugging is set to Trace 2, variable assignments, function calls, and the execution of
scripts are also displayed.

Figure 18-7

The script Addition.ps1 contains a simple addition operation:

$a = 10
$b = 7
write-host “The sum of $a + $b is $($a+$b)”

With debugging set to Trace 0, the statements are simply echoed to the console, except the write-host
statement, which requires the calculation of the sum of $a and $b, as indicated by $($a + $b). This is
shown as a separate step with debugging set to either Trace 1 or Trace 2, as you can see in Figure 18-8.
Similarly, the call to the script Additions.ps1 is shown separately. With debugging set to Trace 2, each
assignment statement is identified by the SET label and each call to a script is identified by a CALL label.

Figure 18-8

409

Chapter 18: Debugging

23_946939 ch18.qxp 3/15/07 7:09 PM Page 409

Once you have a mixture of functions and scripts, setting debugging to Trace 2 can be helpful for fol-
lowing the flow of control. The following function, FourLines, writes two lines to the console and calls
a simple function, SayHello, and then calls a script, Hello.ps1:

function FourLines {
write-host “First line in the function”
write-host “Second line in the function”
SayHello
.\Hello.ps1
}

Figure 18-9 shows the results of calling the FourLines function. Notice the three CALL labels in the
debug material — first to the FourLines function itself, next to the SayHello function, then to the
Hello.ps1 script.

Figure 18-9

Setting Trace to 2 also specifically tracks Trap statements. Figure 18-10 shows the script
ForLoopTrapped.ps1 (which you saw in Chapter 17) run with Trace set to 2. Notice that when $i=0,
the error generated by executing 1/$i is trapped. The trap statement is echoed in the debug output.

Notice that in the information about the TRAP statement, you are shown information about the error:

$? =True
DEBUG: ! SET $i = ‘0’.
DEBUG: 4+ write-host ‘$i’”=$i”
$i =0
DEBUG: 5+ 1/$i
DEBUG: ! TRAP generic; caught [System.DivideByZeroException]
DEBUG: 3+ trap {write-host “This is a custom error message.”;continue}
This is a custom error message.
DEBUG: 3+ trap {write-host “This is a custom error message.”;continue}

410

Part II: Putting Windows PowerShell to Work

23_946939 ch18.qxp 3/15/07 7:09 PM Page 410

Figure 18-10

When you use the –step option, use the statement set-psdebug –off before you attempt a state-
ment like clear-host. Alternatively, choose A, which means yes to all; otherwise, clearing the screen
can be a slow task.

When debugging is set to Step for Addition.ps1, the onscreen appearance and interaction are very
different from any behavior set using the –trace parameter. After each statement, the user is asked if he
wants the execution of a step (or all remaining steps) to continue or not and is also given an option to
suspend the current shell. If the user chooses Yes, the line is executed and the debug information appro-
priate to the value of the –trace parameter is displayed. Figure 18-11 shows the appearance when
answering Y (Yes) to each question posed step by step.

411

Chapter 18: Debugging

23_946939 ch18.qxp 3/15/07 7:09 PM Page 411

Figure 18-11

It’s reasonably interesting to step through a very short script like Addition.ps1, but it becomes more
interesting if you select the Suspend option at appropriate times.

After the statement:

$a = 10

I chose the Suspend option. Notice in Figure 18-12 that after selecting Suspend the prompt changes to
include three successive chevrons (>>>). That indicates that a new PowerShell shell is being used.

Figure 18-12

You can explore any relevant piece of information to help you understand what state, for example, vari-
ables are in. In this simple case, a value has been assigned to $a but not yet to $b. So, in the subshell you
can type the statements

412

Part II: Putting Windows PowerShell to Work

23_946939 ch18.qxp 3/15/07 7:09 PM Page 412

$a
$b

and the value of $a is, as expected, echoed to the screen. It has the value 10, which you would expect at
this stage of execution of the script. There is no value assigned yet to $b, so there is no value to echo to
the screen.

Type Exit to return to the original shell. You are again asked if you want to execute the statement:

$b = 7

Select [Y] Yes. Then select [S] Suspend again. Now you can display the value for both $a and $b, as
shown in Figure 18-13.

Figure 18-13

You might then exit again from the subshell and select [A] Yes to All to allow the script to finish
executing.

Even for debugging a simple script such as Addition.ps1, stepping through a script one step at a time
can be a tedious process. However, the capability to suspend execution of a script, enter a subshell, and
inspect variables is a very powerful tool to debug Windows PowerShell scripts. Of course, it isn’t as slick
as the support for debugging in Visual Studio 2005, but it’s a useful tool nonetheless.

The write-debug Cmdlet
The write-debug cmdlet writes a message to the Windows PowerShell console. It differs from the
write-host cmdlet in that the effect of the write-debug cmdlet is controlled by the value of the

413

Chapter 18: Debugging

23_946939 ch18.qxp 3/15/07 7:09 PM Page 413

$DebugPreference variable. In addition to the common parameters, the write-debug cmdlet supports
a single parameter:

❑ Message — The debug message to be sent to the console

The Message parameter is a required parameter and is also a positional parameter at position 1.

The file AdditionWithDebug.ps1 has several write-debug statements that make it clear to the user
which part of the script has been entered:

write-debug “Script addition.ps1 has been entered.”
$a = 10
Write-debug “Variable $a has been assigned”
$b = 7
Write-debug “Variable $a has been assigned”
write-host “The sum of $a + $b is $($a+$b)”
write-debug “Execution of script addition.ps1 has been completed.”

The default setting of the $DebugPreference variable is SilentlyContinue. If you want to see the
results of write-debug statements displayed, set the value of the $DebugPreference variable to
Continue.

$DebugPreference = “Continue”

With the value of $DebugPreference set to Continue, Figure 18-14 shows the results of executing the
script AdditionWithDebug.ps1. The set-psdebug setting was Off.

Figure 18-14

If you set $DebugPreference to Stop, then execution of a script will stop after the first write-debug
statement, as shown in Figure 18-15.

414

Part II: Putting Windows PowerShell to Work

23_946939 ch18.qxp 3/15/07 7:09 PM Page 414

Figure 18-15

I find the Inquire setting of $DebugPreference very useful when I am actively debugging. It is more
flexible than using

set-psdebug –step

since you can insert, delete, or comment out write-debug statements so that you can step through parts
of a script that are of particular interest to you.

You can combine explicit write-debug statements by using the set-psdebug cmdlet. The information
from set-psdebug and from explicit write-debug statements are interleaved as the script executes.
Figure 18-16 shows the combining of output set by set-psdebug and write-debug.

Figure 18-16

Combing output from set-psdebug and write-debug can be a bit overwhelming, but if you craft the
write-debug statements appropriately, you can potentially avoid the need to run step by step through a
script and simply display variables at times of interest.

If you compare the output on the line from set-psdebug that refers to the write-debug statement with
the line that follows (that is produced by write-debug), then you can get a handle on the values of vari-
ables without adding explicit code to do that or exiting into a subshell to inspect the values of variables.
The first of the following two lines is produced by set-psdebug. Because it outputs the code literally,
you can see which variable is being referred to. In the following line, write-debug has executed and
has output the value of the variable $a. Putting the two pieces of information together, you can see that
$a has been assigned the value 10.

DEBUG: 5+ Write-debug “Variable $a has been assigned”
DEBUG: Variable 10 has been assigned

415

Chapter 18: Debugging

23_946939 ch18.qxp 3/15/07 7:09 PM Page 415

You may prefer to make the debug information more explicit. The script
AdditionWithVariablesDebug.ps1 illustrates the kind of thing you can do using write-debug to
display variable values.

write-debug “Script AdditionWithVariablesDebug.ps1 has been entered.”
$a = 10
Write-debug “Variable $a has been assigned”
write-debug “The value of variable a is $a”
$b = 7
Write-debug “Variable $a has been assigned”
write-debug “The value of variable b is $b”
write-host “The sum of $a + $b is $($a+$b)”
write-debug “Execution of script AdditionWithVariablesDebug.ps1 has been
completed.”

In AdditionWithVariablesDebug.ps1, I have included two statements that specify the value of the
variables:

write-debug “The value of variable a is $a”

and:

write-debug “The value of variable b is $b”

As far as I can ascertain, you cannot use paired apostrophes (or paired escaped apostrophes) to display
the name of a variable as $a. However, the two preceding statements allow you to verify the value of the
variables $a and $b at specified points during script execution.

In the following excerpt from the output shown in Figure 18-17, the lines highlighted in gray are pro-
duced by write-debug statements. The lines with a white background are produced by set-psdebug.

DEBUG: 2+ $a = 10
DEBUG: ! SET $a = ‘10’.
DEBUG: 3+ Write-debug “Variable $a has been assigned”
DEBUG: Variable 10 has been assigned
DEBUG: 4+ write-debug “The value of variable a is $a”
DEBUG: The value of variable a is 10

Figure 18-17 shows the result of executing the script AdditionWithVariablesDebug.ps1.

In a real-life situation you would be debugging much longer scripts than those I have used to illustrate
the write-debug cmdlet. By using the write-debug statement, you can check the values of multiple
variables or other values at critical points in script execution. This can be much quicker than stepping
one step at a time through a long, complex script.

416

Part II: Putting Windows PowerShell to Work

23_946939 ch18.qxp 3/15/07 7:09 PM Page 416

Figure 18-17

You can also embed set-psdebug statements in a script. The following script,
TraceAdditionWithVariablesDebug.ps1, focuses the debugging attention around the assignment of
a value to $b.

write-debug “Script addition.ps1 has been entered.”
$a = 10
Write-debug “Variable $a has been assigned”
write-debug “The value of variable a is $a”
set-psdebug -Trace 2
$b = 7
Write-debug “Variable b has been assigned”
set-psdebug -Off
write-debug “The value of variable b is $b”
write-host “The sum of $a + $b is $($a+$b)”
write-debug “Execution of script addition.ps1 has been completed.”

It uses the command

set-psdebug –Trace 2

to switch tracing on, and

set-psdebug –Off

to switch it off.

Figure 18-18 shows the results of executing TraceAdditionWithVariablesDebug.ps1.

417

Chapter 18: Debugging

23_946939 ch18.qxp 3/15/07 7:09 PM Page 417

Figure 18-18

In the following excerpt from the output shown in Figure 18-18, the lines highlighted in gray are pro-
duced by write-debug statements. The lines with a white background are produced by set-psdebug,
except for the second-to-last line, which is produced by a write-host statement.

DEBUG: Script TraceAdditionWithVariablesDebug.ps1 has been entered.
DEBUG: Variable 10 has been assigned
DEBUG: The value of variable a is 10
DEBUG: 6+ $b = 7
DEBUG: ! SET $b = ‘7’.
DEBUG: 7+ Write-debug “Variable b has been assigned”
DEBUG: Variable b has been assigned
DEBUG: 8+ set-psdebug -Off
DEBUG: The value of variable b is 7
The sum of 10 + 7 is 17
DEBUG: Execution of script addition.ps1 has been completed.

Thus, by combining use of the set-psdebug and write-debug cmdlets, you can control what you dis-
play in selected parts of extensive scripts. By modifying the value of $DebugPreference, you can leave
write-debug statements in your scripts but suppress the display of their content, until you are con-
vinced that all the problems with a script have been ironed out. Simply set $DebugPreference to
SilentlyContinue to conceal all write-debug statements from the user.

Tracing
Tracing functionality is provided with Windows PowerShell, but it is intended primarily for use by
Microsoft support staff. However, if you want to explore beneath the covers what Windows PowerShell
is doing, the tracing cmdlets can be very useful. However, the volume of information produced can
quickly become daunting.

There are three such cmdlets:

❑ trace-command

❑ set-tracesource

❑ get-tracesource

I describe each of these cmdlets briefly in the following sections.

418

Part II: Putting Windows PowerShell to Work

23_946939 ch18.qxp 3/15/07 7:09 PM Page 418

The trace-command Cmdlet
The trace-command cmdlet enables tracing of a specified trace source during the execution of a
command.

In addition to supporting the common parameters, the trace-command cmdlet also supports the follow-
ing parameters:

❑ Name — Specifies the TraceSource categories that tracing is to take place on. The parameter is
required, and it is a positional parameter in position 1.

❑ Expression — Specifies the script code for which tracing will be carried out. The parameter is
required and is a positional parameter in position 2.

❑ Option — Specifies the flags to be set on the TraceSource. An optional parameter that is a
positional parameter at position 3. The default value of this parameter is All.

❑ FilePath — Adds the file trace listener using the specified file.

❑ Debugger — Adds the debugger trace listener if this parameter is specified.

❑ PSHost — Add the PowerShell Host trace listener if this parameter is specified.

❑ ListenerOption — Specifies the options for output from the trace listeners. The default value
is None.

❑ InputObject — Specifies the current pipeline object to be handled when executing the
expression.

❑ Force — If present, overrides normal restrictions.

❑ Command — Specifies the command for which tracing will be done.

❑ ArgumentList — Allows arguments to be set.

The volume of trace information can easily become daunting when using the trace-command cmdlet.
To avoid long-running or nonterminating commands, use the get-tracesource cmdlet (described later
in this chapter) to find the appropriate value for the Name parameter. Avoid using the * wildcard as the
value of the Name parameter.

The allowed values for the Option parameter are

❑ None

❑ All

❑ Assert

❑ Constructor

❑ Data

❑ Delegates

❑ Dispose

❑ Error

419

Chapter 18: Debugging

23_946939 ch18.qxp 3/15/07 7:09 PM Page 419

❑ Errors

❑ Events

❑ Exception

❑ ExecutionFlow

❑ Finalizer

❑ Lock

❑ Method

❑ Property

❑ Scope

❑ Verbose

❑ Warning

❑ WriteLine

The allowed values for the ListenerOption parameter are

❑ None

❑ Callstack

❑ DateTime

❑ LogicalOperationStack

❑ ProcessId

❑ ThreadId

❑ Timestamp

Frequently used values for the Name parameter are

❑ CommandDiscovery — Shows the command discovery algorithm running

❑ FormatFileLoading — Shows the format from a format.ps1 xml file

❑ FormatViewBinding — Shows how a view is formatted

❑ MemberResolution — Show how members of an object are chosen when running a Windows
PowerShell command

❑ ParameterBinding — Shows how parameters are bound to cmdlets

❑ PathResolution — Shows how wildcards are interpreted when resolving paths

❑ RunspaceInit — Shows what is happening during runspace initialization

❑ TypeConversion — Shows how one object is converted to a different type

The following command traces the TypeConversion information for casting a string to a
System.DateTime object:

420

Part II: Putting Windows PowerShell to Work

23_946939 ch18.qxp 3/15/07 7:09 PM Page 420

trace-command –Name TypeConversion –Expression {[DateTime]”2006/12/31”} –Options
All -PSHost

The results of executing the preceding command are shown in Figure 18-19.

Figure 18-19

The following command traces metadata processing, parameter binding the creation and destruction of
cmdlets relating to the running svchost processes:

trace-command –Name metadata, ParameterBinding, Cmdlet –Option All –Expression
{get-process svchost} -PSHost

Figure 18-20 shows the last of several screens of output.

Figure 18-20

If you are interested in knowing more about what happens in Windows PowerShell under the covers,
you could explore some more of the over 100 values allowed for the Name parameter (see the get-
tracesource section, which follows later in this chapter).

421

Chapter 18: Debugging

23_946939 ch18.qxp 3/15/07 7:09 PM Page 421

The set-tracesource Cmdlet
The set-tracesource cmdlet sets or removes options or trace source listeners from a specified trace
source instance.

In addition to the common parameters, the set-tracesource cmdlet supports the following parameters:

❑ Name — Specifies the trace source categories that will be affected. A required parameter that is
also a positional parameter, taking position 1.

❑ Option — The flags to be set on the trace source. The allowed values are listed in the section on
the trace-expression cmdlet.

❑ FilePath — Adds the file trace listener using a specified file.

❑ Debugger — Adds the debugger trace listener.

❑ PSHost — Adds the MSH host trace listener.

❑ ListenerOption — Specifies listener options.

❑ PassThru — Boolean. If true, the modified object is written to the pipeline.

❑ RemoveListener — Optional. If specified, removes all named listeners.

❑ RemoveFileListener — Optional. If specified, removes named file listeners.

The get-tracesource Cmdlet
The get-tracesource cmdlet lists properties for given trace sources.

In addition to the common parameters, the get-tracesource cmdlet supports one parameter:

❑ Name — Specifies trace sources

To find all the possible values for the Name parameter of the trace-command cmdlet, use this command:

get-tracesource –Name *

You can count the number of trace sources available to you using the following code:

$TraceSources = get-tracesource –Name *
$TraceSources.Count

In the version I am running at the time of writing, there are 173 values possible for the Name parameter.

The command

get-tracesource –Name Param*

422

Part II: Putting Windows PowerShell to Work

23_946939 ch18.qxp 3/15/07 7:09 PM Page 422

returns information about all trace sources whose name begins with Param. The results of executing the
preceding command are shown in Figure 18-21.

Figure 18-21

Summary
Debugging in Windows PowerShell is, like debugging in any other language, something of a black art. I
discussed how simple syntax errors could cause potentially puzzling and sometimes silent errors.

This chapter introduced you to the set-psdebug cmdlet that allows you to set the volume of debugging
information that is displayed. It also introduced the write-debug cmdlet, which allows you to output
custom debug information, and showed you how to use the $DebugPreference variable to vary
how write-debug statements are handled. In addition, it briefly described the trace-command,
set-tracesource, and get-tracesource cmdlets.

423

Chapter 18: Debugging

23_946939 ch18.qxp 3/15/07 7:09 PM Page 423

23_946939 ch18.qxp 3/15/07 7:09 PM Page 424

Working with the File
System

Windows PowerShell provides cmdlets to allow you to work effectively with drives, folders, and
files on the file system. Windows PowerShell supports identification of drives using the get-
psdrive cmdlet and exploration of files and folders using the get-childitem cmdlet. You can
also create new drives, folders, and files. There is also a group of cmdlets that allow you to read
and write content to and from text files.

Access to folders and files using Windows PowerShell is supported by the FileSystem provider.
Additional command shell providers provide access to the HKLM (HKey_Local_Machine) and
HKCU (HKey_Current_User) hives in the registry as well as drives for aliases, certificates, envi-
ronment variables, functions, and variables. The command shell providers are in the
Microsoft.Management.Automation.Core namespace.

If you want to find all providers supported on your system use the command:

get-psprovider

or, to find information about each drive and its associated provider, use this command:

get-PSdrive -Name * |
format-list

All drives on the local system are listed, as you can see in the part of the results shown in
Figure 19-1.

24_946939 ch19.qxp 3/15/07 7:09 PM Page 425

Figure 19-1

The default information displayed includes the command shell provider relating to each drive. The
value of the get-psdrive cmdlet’s Name parameter is the wildcard *, which matches all drives. The
format-list cmdlet lets you see the full name of the provider that supports each drive.

To find all file system drives use this command:

get-psdrive –Name * -PSProvider FileSystem |
format-table Name, Root -auto

By specifying FileSystem as the value for the -PSProvider parameter, you indicate that only drives
whose provider is the FileSystem provider are to be passed along the pipeline to the format-table
cmdlet. There is no point in displaying the Provider column in the output (which would be displayed
if you hadn’t used the format-table cmdlet with specified columns) since, by specifying the value for
the -PSProvider parameter in the second step of the pipeline, you know that the objects passed along
the pipeline relate only to the FileSystem provider. The following shows the results on a system with
one floppy drive, one hard drive, and one DVD drive.

Name Root
---- ----
A A:\
C C:\
D D:\

Path Names in Windows PowerShell
When you specify a path name in Windows PowerShell you have two options — a fully qualified path
name or a relative path name.

426

Part II: Putting Windows PowerShell to Work

24_946939 ch19.qxp 3/15/07 7:09 PM Page 426

Fully Qualified Path Names
A fully qualified path name differs from absolute paths you may be familiar with in other contexts, since
it may include the name of the Windows PowerShell provider that enables file system operations. A fully
qualified name takes this form:

ProviderName::drive:\container\...\item

The preceding syntax applies to paths in all drives exposed by Windows PowerShell, not just those in
the file system. In the context of the FileSystem provider the container is a folder (directory) and the
item is a file.

An optional provider name is followed by a pair of colon characters if the provider name is used. Strictly
speaking, the provider name is never needed, since drive names should be unique across a system. The
drive name is followed by a single colon character and a backslash. Actually, Windows PowerShell will
support the forward slash, too, if you are used to that convention due to a Unix or Linux background.
Optionally, additional subcontainers (folders) can be included, as appropriate, in the path. The item is
also optional, when the fully qualified path refers to a folder.

The following command lists all folders (and any files) in the C:\Program Files folder that begin with
the character sequence mi:

get-childitem “FileSystem::C:\Program Files\mi*”

If you prefer, you can type the command using forward slashes and obtain the same result:

get-childitem “FileSystem::C:/Program Files/mi*”

The item (using the FileSystem provider an item refers to a file) is specified using a definition that
includes a wildcard, mi*, which matches any name beginning with the character sequence mi. Since the
item is optional folders in C:\Program Files, which begin with the character sequence mi are also dis-
played.

When you want to access a path that includes one or more space characters, you must enclose the path
name in paired double quotation marks or paired apostrophes.

If you want to include folders in the results or expect folders in the results be careful how you use the
. type of wildcard that you may have used often in CMD.exe. For example, compare in Figure 19-2
how, when using Windows PowerShell, the wildcard mi*.* returns many fewer folders than the earlier
command, which used mi*.

get-childitem “FileSystem::C:\Program Files\mi*.*”

The difference in the number of returned folders isn’t surprising, since mi*.* means find any name that
begins with the character sequence mi, then has zero or more characters, then a literal period character,
then zero or more characters. In the Program Files folder on my machine only one folder,
Microsoft.NET, matches mi*.*, since it begins with the character sequence mi and also includes a lit-
eral period character. Figure 19-2 shows the results of running the two preceding commands.

427

Chapter 19: Working with the File System

24_946939 ch19.qxp 3/15/07 7:09 PM Page 427

Figure 19-2

However, notice that Windows PowerShell differs from CMD.exe in how mi*.* is interpreted when
looking for folders and files. As you can see in Figure 19-3, CMD.exe returns all folders beginning with
the character sequence mi even when the pattern is mi*.*. My opinion is that the CMD.exe behavior is
incorrect and that the Windows PowerShell behavior is correct. In any case, if you used wildcards such
as *.* in CMD.exe, you need to be aware that PowerShell behavior is different.

Figure 19-3

428

Part II: Putting Windows PowerShell to Work

24_946939 ch19.qxp 3/15/07 7:09 PM Page 428

Windows PowerShell supports wildcards in parameter values beyond the traditional ? (matches any one
character), and * (matches zero or more characters) metacharacters. You can specify a class of characters
to match. A character class is signified by characters inside paired square brackets. For example,

get-childitem –Name C:\[abc]*

will match any folder or filename in the root of drive C: beginning with a or b or c. The characters inside
the paired square brackets are matched once; then zero or more characters are matched.

When you use wildcards in the value of a parameter, they are case-insensitive.

The preceding command would match any of the following, if they were present in the current working
directory:

apple.txt
bear.txt
cat.txt

since the first character of each filename is found in the character class [abc].

Windows PowerShell wildcards also support a range inside a character class. For example,

get-childitem –Name C:\[a-f]*

matches folders or filenames in the root of drive C: that begin with a through f.

The order of characters in a wildcard range is important. You must specify the character earlier in the
alphabet first, then the hyphen, then the character last in the alphabet. Attempting to use [f-a] as a
range, for example, produces an error message.

You can also use the hyphen as a literal character (rather than having a special meaning to signify a
range) and use numeric digits inside a character class, too. To demonstrate this, you can create a few
sample files using the following commands, which to send a short piece of text to a named. The follow-
ing commands assume that the directory Pro PowerShell\Chapter 19 exists. Amend the path to suit,
if you wish:

“test” > “\Pro PowerShell\Chapter 19\-hyphenfirst.txt”
“test” > “\Pro PowerShell\Chapter 19\1onefirst.txt”
“test” > “\Pro PowerShell\Chapter 19\2twofirst.txt”
“test” > “\Pro PowerShell\Chapter 19\Test1.txt”
“test” > “\Pro PowerShell\Chapter 19\Test2.txt”
“test” > “\Pro PowerShell\Chapter 19\Test3.txt”

To find files whose name begins with a hyphen or the numeric digit 2, use the following command:

get-childitem “\Pro PowerShell\Chapter 19\[-2]*.txt”

If you intend a hyphen inside the square brackets of a character class to match a hyphen (rather than to
represent a range), then the hyphen must be the first character after the left square bracket.

429

Chapter 19: Working with the File System

24_946939 ch19.qxp 3/15/07 7:09 PM Page 429

Similarly, to match Test1.txt and Test3.txt, you can use a character class containing numeric digits
as in the following command:

get-childitem “\Pro PowerShell\Chapter 19\Test[13].txt

Figure 19-4 shows the results of running the two preceding commands.

Figure 19-4

Relative Path Names
Relative path names are likely to be familiar to you. Given a specific current location a path is inter-
preted relative to that current location.

By default the PowerShell prompt displays the current directory. If you have configured the prompt so
that the current location is not displayed as part of the prompt, you can display the current location
using the command:

get-location

If the current location is C:\ then, using the relative path, the command

get-childitem “Program Files\mi*.*”

finds all folders and files that match the item name (including wildcards). The equivalent command
using an absolute path is:

get-childitem “C:\Program Files\mi*.*”

Figure 19-5 shows the use of the fully qualified path name and relative path name.

430

Part II: Putting Windows PowerShell to Work

24_946939 ch19.qxp 3/15/07 7:09 PM Page 430

Figure 19-5

The Windows PowerShell notation for current location (a single period character) and the parent of the
current location (two period characters) is likely to be familiar to you from CMD.exe.

Path Names and Running Commands
When you specify a fully qualified path name for a command or specify a relative path name for a com-
mand, Windows PowerShell searches for a matching command in different ways.

If you use a fully qualified path name, Windows PowerShell looks for a matching filename in the speci-
fied location. If such a file is found, the command is run (subject to security settings). If no matching file
is found in the specified location Windows PowerShell runs no command.

When using a fully qualified path name without any spaces, you can simply type:

C:\SomeDirectory\SomeScript

or:

C:\SomeDirectory\SomeScript.ps1

to run a script called SomeScript.ps1 located in the SomeDirectory folder (assuming that the neces-
sary permissions are in place to run scripts on the machine).

If, however, the path contains one or more space characters, for example C:\Pro PowerShell\Chapter
19\SomeScript.ps1, you have to use paired quotation marks or apostrophes to avoid an error message
about C:\Pro not being a recognized cmdlet and so on. However, when you type:

“C:\Pro PowerShell\Chapter 19\SomeScript.ps1”

or:

“C:\Pro PowerShell\Chapter 19\SomeScript”

431

Chapter 19: Working with the File System

24_946939 ch19.qxp 3/15/07 7:09 PM Page 431

all that happens is that the string you typed is echoed back to the console, which is not surprising since
you simply entered a string enclosed in paired quotes or apostrophes and Windows PowerShell is treat-
ing it simply as a string. To run the script add an ampersand, &, at the beginning of the line. The & char-
acter indicates to the PowerShell parser that what follows is to be treated as a command. PowerShell will
run the script whether you put a space character between the ampersand and the path:

& “C:\Pro PowerShell\Chapter 19\SomeScript.ps1”

or omit the space character:

&”C:\Pro PowerShell\Chapter 19\SomeScript.ps1”

You don’t need to include the period character and the ps1 file extension to run the script.

Figure 19-6 shows the results when SomeScript.ps1 contains a single command, get-date.

Figure 19-6

If script execution on the machine is restricted, you won’t be able to run any scripts. You first need to
alter Powershell’s Execution policy, as described in Chapter 10.

When you use a command without specifying a fully qualified path name, Windows PowerShell
searches the following locations for possible matches:

1. The aliases drive for currently defined aliases

2. The functions drive for currently defined functions

3. Commands in any folder specified in the PATH environment variable.

When you use a relative path, you need to be careful how you type the command if the script is in the
current working directory. For example, typing:

SomeScript

or:

SomeScript.ps1

432

Part II: Putting Windows PowerShell to Work

24_946939 ch19.qxp 3/15/07 7:09 PM Page 432

will produce the error message shown in Figure 19-7 (where the command is aimed at running the
SimpleScript.ps1 script.

Figure 19-7

To successfully run a script in the current working directory, you need to explicitly specify that it is in
the current directory, using the period notation to specify the current directory. So, to run a script named
SimpleScript.ps1 in the current directory use:

.\SimpleScript

or:

.\SimpleScript.ps1

The preceding behavior is intended as a security feature. If, for example, a virus or similar malware
saved PowerShell scripts perhaps called something like dir.ps1, then typing dir at the command line
wouldn’t cause the malicious script to be executed. The protection is limited, since malware could mod-
ify an alias, as in the following sequence of commands:

remove-item alias:dir
“write-host ‘This script could have done something nasty.’” > C:\Nasty.ps1
new-alias dir C:\Nasty.ps1
dir

Figure 19-8 shows the results of running the preceding commands. When the user types dir, presum-
ably to list files, the potentially malicious script is executed (subject to permissions to run scripts).

Figure 19-8

433

Chapter 19: Working with the File System

24_946939 ch19.qxp 3/15/07 7:09 PM Page 433

Simple Tasks with Folders and Files
This section demonstrates techniques you can use to explore drives, folders, and files on a Windows
machine.

Finding the drives on a system
To find the drives on a machine, you use the get-psdrive cmdlet. Typically, simply typing

get-psdrive

displays all drives on the system, including exposing drives for the registry, environment variables,
aliases, and functions. Figure 19-9 shows the drives on a Windows XP machine that has one hard drive.

Figure 19-9

Finding Folders and Files
To find folders and files use the get-childitem cmdlet and specify the Path parameter to match a sin-
gle folder or file or multiple folders or files. The get-childitem cmdlet returns FileInfo or
DirectoryInfo objects when used with the FileSystem provider. When files are found FileInfo
objects are returned. When folders (directories) are found, then DirectoryInfo objects are returned.

If you want to find only folders you can use the following command:

get-childitem * |
where-object {$_.Mode –match “d”}

Or to find files use this command:

get-childitem * |
where-object {$_.Mode –notmatch “d”}

434

Part II: Putting Windows PowerShell to Work

24_946939 ch19.qxp 3/15/07 7:09 PM Page 434

The where-object cmdlet in the second step of the pipeline looks for a match in the Mode property of
the FileInfo objects or DirectoryInfo objects passed on from the first pipeline step. Figure 19-10
shows the result of executing the preceding commands.

Figure 19-10

An alternative way to selectively retrieve directories is to use this command:

get-childitem * |
where-object {$_.GetType().Name –eq “DirectoryInfo”}

In the second step of the pipeline, the GetType() method of the current object (which is either a
DirectoryInfo or a FileInfo object when the FileSystem provider is used) is used to retrieve the
type of the object. Its Name property is then tested for equality to the string DirectoryInfo to test if the
object is a DirectoryInfo object.

To selectively retrieve files use this command:

get-childitem * |
where-object {$_.GetType().Name –eq “FileInfo”}

This time the Name property is tested for equality to the string FileInfo. If that test returns True, then the
object is a FileInfo object. Figure 19-11 shows the results returned from the preceding two commands.

435

Chapter 19: Working with the File System

24_946939 ch19.qxp 3/15/07 7:09 PM Page 435

Figure 19-11

Finding File Characteristics
You might want to find information about the characteristics of a file that are not accessible simply by
using the get-childitem cmdlet.

Working with FileInfo Object methods
To find the methods available on a FileInfo object, use this command:

get-childitem * |
where-object {$_.GetType().Name –eq “FileInfo”} |
get-member –memberType Method

There are 47 methods available on a FileInfo object. The set_IsReadOnly() method is used in the
following example. In the following example, you will set a file, ChangeAccess.txt to read-only,
attempt to append text to it (which fails), change it back to read-write, and then successfully write the
appended text to the file.

First redirect some literal text to create a new file:

“Create as read-write” > ChangeAccess.txt

Then assign the FileInfo object for the file, retrieved by the get-childitem cmdlet to the variable $a:

$a = get-childitem ChangeAccess.txt

Then display the mode property of the file:

$a.Mode

436

Part II: Putting Windows PowerShell to Work

24_946939 ch19.qxp 3/15/07 7:09 PM Page 436

Then set the file to read only using the set_IsReadOnly() method of the FileInfo object:

$a.set_IsReadOnly(1)

Then display the mode to confirm the new characteristic of the file:

$a.Mode

The r in the mode indicates that the file is now read-only.

Then attempt to redirect some text to the file using the >> redirection operator, which appends text to an
existing file:

“Attempt to append text to the file” >> ChangeAccess.txt

The error message shown in Figure 19-12 is displayed. Then turn read-only off using the
set_IsReadOnly() method of the FileInfo object with argument of 0:

$a.set_IsReadOnly(0)

And confirm the change using the FileInfo object’s Mode property:

$a.Mode

The r is no longer present in the mode of the file, indicating that it is now read-write. Now retry to
append text to the file:

“Attempt to append text to the file” >> ChangeAccess.txt

This time it succeeds, since the error message is no longer displayed. Confirm that the command has
succeeded using the get-content cmdlet to echo the content of the file to the console:

get-content ChangeAccess.txt

Figure 19-12 shows the results at each step in the preceding example.

Figure 19-12

437

Chapter 19: Working with the File System

24_946939 ch19.qxp 3/15/07 7:09 PM Page 437

Working with FileInfo Object properties
To find the properties of a FileInfo object, use the following command:

get-childitem * |
where-object {$_.GetType().Name –eq “FileInfo”} |
get-member –memberType Property

The following example allows you to use some of the properties of the FileInfo object. In preparation
for finding the files, first create three .txt files using the add-content cmdlet. The commands assume
that C:\Pro psh\Chapter 19 is the current directory. The script is called CreateTextFiles.ps1.

add-content Test1.txt “This is test file 1.”
add-content Test2.txt “This is test file 2, you know.”
add-content Test3.txt “Believe it or not this is test file 3.”

Execute the CreateTextFiles.ps1 script using this command:

.\CreateTextFiles.ps1

The following code uses the foreach statement to display selected characteristics of a collection of files:

foreach ($file in (get-childitem -Path “c:\Pro PowerShell\Chapter 19\Test*.txt”))
{

write-host $file.fullname “ File length is: $($file.length).”
}

Figure 19-13 shows the result of executing the preceding commands.

Figure 19-13

438

Part II: Putting Windows PowerShell to Work

24_946939 ch19.qxp 3/15/07 7:09 PM Page 438

You can also use the measure-object cmdlet to display statistics about text files. For example, the fol-
lowing command displays the sum, average, minimum, and maximum lengths of the three files created
using the crateTextFiles.ps1 script.

get-childitem Test*.txt |
measure-object –Property Length –Average –Sum –Min –Max

Objects corresponding to the three text files are passed to the second step in the pipeline. The Property
parameter of the measure-object cmdlet specifies which characteristic of the FileInfo objects are to
be measured. The count is displayed by default. The Average, Sum, Min, and Max parameters cause the
average, sum, minimum, and maximum values of the selected property to be displayed. Figure 19-14
shows the result of running the preceding command.

Figure 19-14

Exploring Files Using the select-object Cmdlet
The select-object cmdlet allows you to explore files and display ranked files according to some spec-
ified criterion. For example, the following simple pipeline using the select-object cmdlet

get-childitem “C:\Windows\System32*.dll” |
select-object –First 5

returns the first five DLLs in the Windows\System32 directory. By default, you see the first five files
alphabetically. Similarly, using the command:

get-childitem “C:\Windows\System32*.dll” |
select-object –Last 5

you see the last five DLL files ordered alphabetically. Figure 19-15 shows the results of running the two
preceding commands on a Windows XP SP2 machine.

439

Chapter 19: Working with the File System

24_946939 ch19.qxp 3/15/07 7:09 PM Page 439

Figure 19-15

Of course, you don’t need to choose five objects; you can specify whatever number is relevant to your
needs. I chose that number to make it easy to display the results of the preceding commands on the
page. Nor do you have to select the first and last files according to alphabetical order. You could specify
any criterion that is of interest to you. For example, you could select files according to the file size, which
is represented by the Length property on the FileInfo object. To find the first five files by size (that is
the five smallest DLLs), use this command:

get-childitem “C:\Windows\System32*.dll” |
sort-object Length |
select-object –First 5 |
format-table FullName, Length -auto

The first step in the pipeline selects all DLLs in the Windows\System32 directory. The second step uses
the sort-object cmdlet to sort the pipeline objects according to the value of the Length property. The
third step uses the select-object cmdlet to select the first five objects passed from the second step.
Since the second step has sorted the objects according to their size, the third step selects the five smallest
files. The fourth step uses the format-table cmdlet to display the FullName and Length properties of
the FileInfo objects.

To select the five largest DLLs in the directory, use the Last parameter with the select-object cmdlet:

get-childitem “C:\Windows\System32*.dll” |
sort-object Length |
select-object –Last 5 |
format-table FullName, Length -auto

440

Part II: Putting Windows PowerShell to Work

24_946939 ch19.qxp 3/15/07 7:09 PM Page 440

Figure 19-16 shows the results of running the two preceding commands.

Figure 19-16

By modifying the property on which the sort-object cmdlet sorts in the second step of the pipeline,
you can use the select-object cmdlet to display a sorted list based on any property of a FileInfo
object. For example, if you want to find which files have not been accessed for longest use this command:

get-childitem “C:\Windows\System32*.dll” |
sort-object LastAccessTime |
select-object –First 5 |
format-table FullName, LastAccessTime -auto

Or to find the most recently accessed files, use this command:

get-childitem “C:\Windows\System32*.dll” |
sort-object LastAccessTime |
select-object –Last 5 |
format-table FullName, LastAccessTime -auto

In the second step of the pipeline, the objects are sorted on the value of the LastAccessTime property of
the FileInfo object. Figure 19-17 shows the results of running the two preceding commands.

441

Chapter 19: Working with the File System

24_946939 ch19.qxp 3/15/07 7:09 PM Page 441

Figure 19-17

Finding Hidden Files
The get-childitem cmdlet allows you to force information about hidden files or folders to be dis-
played. To display hidden files or folders, use the Force parameter with the get-childitem cmdlet.

In this example, you display files and folders whose name begins with the letter r. The current location
is C:\ on a Windows XP SP2 machine. To display those files and folders use this command:

get-childitem –Path [rs]*

When you add the Force parameter:

get-childitem –Path [rs]* -Force

the hidden folders RECYCLER and System Volume Information are displayed in the results. Figure
19-18 shows the results of executing the two preceding commands. Notice in Figure 19-18 that the mode
for RECYCLER and System Volume Information contains an h that indicates that the folder is hidden.

442

Part II: Putting Windows PowerShell to Work

24_946939 ch19.qxp 3/15/07 7:09 PM Page 442

Figure 19-18

Tab Completion
Tab completion is available to you when using the get-childitem cmdlet and other cmdlets. As you
can see in Figure 19-19, when I run the command:

get-childitem [pw]* |
where-object {$_.Mode –match “d”}

in the root directory of a Windows XP machine’s hard disk, several folders are displayed, including the
Windows folder and the Pro PowerShell folder.

Figure 19-19

443

Chapter 19: Working with the File System

24_946939 ch19.qxp 3/15/07 7:09 PM Page 443

If you type

cd wi

then press the Tab key, the name of the single matching folder C:\Windows is completed for you.

Similarly, if you delete the preceding and type

cd Pro

then press the Tab key twice (since I still have a Pro Monad folder) the command changes cycles to

cd ‘Pro PowerShell’

with the paired apostrophes intelligently added for you. If you intended to change the folder to the
C:\Program Files folder, press Tab twice more and the command changes to:

cd ‘Program Files’

Thus, Windows PowerShell will complete folder names for you. If there is ambiguity, pressing the Tab
key additional times allows you to cycle through the matching options.

Be aware that in PowerShell 1.0 that tab completion for set-location or its cd alias also cycles
through filenames. You can’t set the location to be a file. I assume that this behavior will be corrected in
a future version of PowerShell.

Tab completion also works for each step of a multistep change in location. For example, to move to the
folder C:\Pro PowerShell\Chapter 19 (assuming it exists on the machine) from the root directory of
drive C:, you can use the following commands. Type

cd Pro

then hit the Tab key. The command now reads:

cd ‘Pro PowerShell’

Use the left arrow key to move the cursor to immediately before the right apostrophe, type \Ch and
press Tab. The command now shows

cd ‘Pro PowerShell\Chapter 19’

assuming that the only folder in the Pro PowerShell folder beginning with Ch is the Chapter 19 folder.
If you have other folders such as Chapter 18 in the Pro PowerShell folder, you will need to press Tab
multiple times until the preceding command is displayed.

444

Part II: Putting Windows PowerShell to Work

24_946939 ch19.qxp 3/15/07 7:09 PM Page 444

Redirection
Windows PowerShell has two redirection operators, > and >>. A redirection operator redirects the out-
put of a command (or pipeline) to a specified location. The > operator creates a new file and redirects
text to it or, if the file exists, it overwrites the existing content. The >> operator appends text to an exist-
ing file without overwriting the existing content.

You can redirect text from the command line to a file. For example, to redirect the literal text Hello
world! to a not yet existent file NonExistent.txt in the same directory use this command:

“Hello world!” > NonExistent.txt

You can check that the content has been added to the newly created file using the command:

get-content NonExistent.txt

If you then redirect new text to the file using the > operator, it overwrites the existing content, as you can
demonstrate using the following commands:

“This overwrites the old text.” > NonExistent.txt
get-content NonExistent.txt

But, if you use the >> operator, you can append text to the file, as you can demonstrate using the follow-
ing commands:

“This appends a new line to the file.” > NonExistent.txt
get-content NonExistent.txt

Figure 19-20 shows the results of executing the preceding commands in this section.

Figure 19-20

Similarly, you can use the >> redirection operator to append text to an existing file, as shown in Figure
19-20 when you execute the following commands:

“This text goes to a new file.” > AppendHere.txt
“This text is appended to the AppendHere.txt file.” >> AppendHere.txt
get-content AppendHere.txt

445

Chapter 19: Working with the File System

24_946939 ch19.qxp 3/15/07 7:09 PM Page 445

You can also redirect output from a pipeline to a file. The following script displays a timestamp together
with the name and handle count on processes whose name begins with s:

“This script was executed: $(get-date)”

get-process s* |
format-table processname, handlecount -auto

The first line of the script executes the get-date cmdlet to provider a live date. By omitting the write-
host cmdlet the text is echoed to the screen when you execute the script on its own, but the line can be
redirected to a file when you add a redirection operator.

The following command executes the script SimpleScript.ps1 and sends the output to the file
ProcessesWithTimestamp.txt:

.\SimpleScript.ps1 > ProcessesWithTimestamp.txt

Confirm that the file has been created by using the following command. Notice the length of the file.

get-content ProcessesWithTimestamp.txt

If you want to only store one copy of information about running processes, then simply repeat the first
command at some future time. However, if you want to append updated information to the file on mul-
tiple occasions use the >> redirection operator, as in the following command:

.\SimpleScript.ps1 >> ProcessesWithTimestamp.txt

As you can see in Figure 19-21, the size of ProcessesWithTimestamp.txt has approximately doubled,
indicating that additional information about running processes has been appended.

Figure 19-21

446

Part II: Putting Windows PowerShell to Work

24_946939 ch19.qxp 3/15/07 7:09 PM Page 446

Creating Custom Drives
If you are working on the command line, it can be time-consuming, tedious, and error prone to type
something like

cd “c:\My Documents\Test Scripts\PowerShell Book”

time after time. Tab completion makes the process easier, but you still have to use the Tab key and
arrows keys Windows PowerShell allows you to create a custom drive, let’s call it book, so that you can
simply type

cd book:

and you will be in the directory that you want to be in.

In this example, I will show you how to create a custom drive. First, you will use Windows PowerShell
to create a directory structure. To do that, use these commands (assuming that your current location is in
the root folder of drive C:.

new-item “My Documents” –Type Directory
cd “My Documents”
new-item “Test Scripts” –Type Directory
cd “Test Scripts”
new-item “PowerShell Book” –Type Directory
cd “PowerShell Book”

As you can see in Figure 19-22, information about each new folder is displayed as it is created.

Figure 19-22

447

Chapter 19: Working with the File System

24_946939 ch19.qxp 3/15/07 7:09 PM Page 447

To create the new drive called Book and display some of its properties, use the following command:

new-psdrive –Name Book –PSProvider FileSystem –Root “C:\My Documents\Test
Scripts\PowerShell Book” |
format-list

Be careful not to include a colon character in the drive name in the preceding command. The value of the
Provider parameter specifies that the FileSystem provider is used with the Book drive. The value of
the Root parameter specifies the directory that is the root of the Book drive.

Navigate to the new drive using this command (this time you do need to include the colon character):

cd Book:

Create a file in the root folder of the new drive using this command:

“This is in drive Book:” > New.txt

Switch back to drive C: then navigate to the C:\My Documents\Test Scripts\PowerShell Book
folder using these commands:

cd c:
cd “My Documents\Test Scripts\PowerShell Book”

Then you can confirm that the file that was added to the drive Book was added in the folder C:\My
Documents\Test Scripts\PowerShell Book using this command:

get-childitem *

Figure 19-23 shows the results of running the preceding commands.

Figure 19-23

448

Part II: Putting Windows PowerShell to Work

24_946939 ch19.qxp 3/15/07 7:09 PM Page 448

Cmdlets for File Actions
There are several cmdlets in Windows PowerShell version 1 that allow you to work with folders and
files in the file system.

Using the out-file Cmdlet
The out-file cmdlet allows you to send the output of a command to a file. It is typically used as a step
in a pipeline.

In addition to supporting the common parameters the out-file cmdlet supports the following
parameters:

❑ FilePath — Specifies the path to the file where the command output is to be written. This
parameter is a required positional parameter in position 1.

❑ Encoding — Specifies the encoding to be used when writing the file. This parameter is an
optional positional parameter in position 2.

❑ Append — Specifies that data is to be appended to a file. This parameter is a named parameter.

❑ Width — Specifies how wide the individual lines of output are to be. A named parameter. The
default value is 80.

❑ NoClobber — If present, specifies that an existing file will not be overwritten.

❑ InputObject — Specifies the input object. An optional parameter.

The following command outputs a table containing the names of running services to a file named
RunningServices.txt. Since the file does not exist before the command is run, the file is created.

get-service -ServiceName * |
where-object {$_.status -eq “running”} |
format-table ServiceName, Status |out-file -filePath “C:\Pro PowerShell\Chapter
19\RunningServices.txt”

Figure 19-24 shows part of the content of RunningServices.txt.

Figure 19-24

449

Chapter 19: Working with the File System

24_946939 ch19.qxp 3/15/07 7:09 PM Page 449

The following command uses the get-date cmdlet to get the current date and time. That datetime
value is then output using the out-file cmdlet with the Append parameter set. The file
RunningServices.txt already existed, having been created by the preceding command, so the
-append parameter needs to be specified to allow data to be appended to the file.

get-date |
out-file -filePath “C:\Pro PowerShell\Chapter 19\RunningServices.txt” –append

As you can see in Figure 19-25, the date and time is added to the file.

Figure 19-25

Using Cmdlets to Work with Paths
PowerShell provides cmdlets designed to let you work with paths:

❑ convert-path

❑ join-path

❑ resolve-path

❑ split-path

❑ test-path

These cmdlets can be used with PowerShell providers other than the FileSystem provider. The follow-
ing descriptions relate to their use with the FileSystem provider.

The test-path cmdlet allows you to test if all elements of a path exist. In addition to the common
parameters, it supports the following parameters:

❑ path — Specifies the path to be tested.

❑ pathType — Specifies the type of element that the path locates. Permitted values are
Container (a folder in the FileSystem provider), Leaf (a file in the FileSystem provider),
and Any. The default value is Any.

❑ include — Qualifies the value of the path parameter.

450

Part II: Putting Windows PowerShell to Work

24_946939 ch19.qxp 3/15/07 7:09 PM Page 450

❑ exclude — Qualifies the value of the path parameter.

❑ isValid — Tests only whether the syntax of the path is valid. If present the existence of the
path is not tested.

❑ Filter — Specifies a filter to apply when retrieving objects.

❑ Credential — Specifies a credential to get access to a resource.

The following command:

test-path “C:\Pro PowerShell\Chapter 19”

tests for the existence of the folder C:\Pro PowerShell\Chapter 19. In Figure 19-26, you can see that
the folder exists and the command returns True.

At the time of running the following command:

test-path “C:\Pro PowerShell\Chapter 20”

the Chapter 20 folder had not been created, so the command returns False. Even though the folder
doesn’t exist, by using the isValid parameter you can test that the syntax of the path is valid.

test-path “C:\Pro PowerShell\Chapter 20” –isValid

Figure 19-26

If you create the Chapter 20 folder:

new-item -type Directory “C:\Pro PowerShell\Chapter 20”

you can then confirm its existence by executing the following command:

test-path “C:\Pro PowerShell\Chapter 20”

The join-path cmdlet allows you to join a container portion of a path to a child path. The join-path
cmdlet supports the following parameters in addition to the common parameters described in Chapter 6:

451

Chapter 19: Working with the File System

24_946939 ch19.qxp 3/15/07 7:09 PM Page 451

❑ path — Specifies the container (or main) portion(s) of a path. This is a positional parameter in
position 1.

❑ childPath — Specifies the element to append to the value of the –path parameter. This is a
positional parameter in position 2.

❑ resolve — Displays the items referenced by a joined path.

❑ credential — Specifies a credential to get access to a resource.

The following command joins two elements of a path that references .txt files in the Pro
PowerShell\Chapter 19 folder and displays the items it resolves to:

join-path -path “C:\Pro PowerShell\Chapter 19” -childPath “\Test*.txt” -resolve

As you can see in Figure 19-27 it resolves to three .txt files.

Figure 19-27

If you use a literal value for the –path parameter, be careful that you supply a \ character to appropri-
ately separate the components of the path. The following command omits the \ character. As you can see
in Figure 19-27, it fails.

join-path -path “C:\Pro PowerShell\Chapter 19” -childPath “Test*.txt” -resolve

If you use a wildcard in the value of the –path parameter, you don’t need to be so careful about supply-
ing a \ character. For example, in the following command no \ character is supplied but it works.

join-path -path C:\Win* -childPath System* -resolve

Figure 19-28 shows the result of executing the preceding command.

Figure 19-28

452

Part II: Putting Windows PowerShell to Work

24_946939 ch19.qxp 3/15/07 7:09 PM Page 452

The resolve-path cmdlet resolves wildcard characters in a path and displays the items that the wild-
cards resolve to. In addition to the common parameters, the resolve-path cmdlet supports the follow-
ing parameters:

❑ path — The path to be resolved. Wildcards are allowed. The parameter is positional in
position 1.

❑ literalPath — The value is interpreted literally. Wildcards are not permitted.

❑ credential — Specifies a credential to get access to a resource.

The following command illustrates how to use the resolve-path cmdlet.

resolve-path –path “C:\Pro PowerShell\Chapter 19\Test*.txt”

Summary
In Windows PowerShell, you can use fully qualified or relative path names.

When using paired quotation marks or apostrophes with paths that include spaces, you need to use the
& character if you intend that the command specified in a path is to be executed.

The get-psdrive cmdlet allows you to explore drives on a system. The get-childitem cmdlet allows
you to explore folders and files on a system.

Windows PowerShell supports the creation of custom drives, to increase the convenience of access to fre-
quently used folders with lengthy paths.

PowerShell supports several cmdlets to allow you to work with paths, including the test-path, join-
path, and resolve-path cmdlets.

453

Chapter 19: Working with the File System

24_946939 ch19.qxp 3/15/07 7:09 PM Page 453

24_946939 ch19.qxp 3/15/07 7:09 PM Page 454

Working with the Registry

Windows PowerShell provides several command shell providers that allow you to work with data
stores in a similar way to the ways you can work with the file system when using CMD.exe. By
using a familiar file system metaphor, you should be able to navigate effectively in other hierarchi-
cal data stores without difficulty, assuming that you understand the structure of the store. Among
the data stores that Windows PowerShell allows you to access in this way are the HKLM
(HKey_Local_Machine) and HKCU (HKey_Current_User) hives of the Windows registry.

Windows PowerShell provides cmdlets to allow you to explore two registry hives and to alter the
values held in registry keys. This functionality is powerful and flexible but, as with everything relat-
ing to the registry, you need to proceed with caution. If you make inappropriate changes to the reg-
istry, it is certainly possible to end up with a machine that won’t run correctly or may not run at all.
So be warned. Make changes to the registry only when you understand the implications of what
you are doing. And check carefully for typos and other errors before you commit a change.

Introduction to the Registry
When an operating system boots up and while it’s running, it needs to access pieces of informa-
tion that indicate how the machine is configured to enable the operating system to start up and
run. Since the introduction of Windows NT, the registry has been the store for such information in
Windows operating systems. Previously, startup information was contained in a potentially large
number of .ini files. As the number of files increased, performance potentially dropped off. The
registry was introduced with a view to solving that problem and allowing a more coherent way to
store startup and other configuration information.

The registry is a hierarchical data store. It stores configuration information relating to users, hard-
ware, and applications. The data in the registry is stored in binary files, so it isn’t readily accessible
using standard text-editing applications.

25_946939 ch20.qxp 3/15/07 7:10 PM Page 455

Microsoft provides two GUI tools, RegEdit.exe and RegEdt32.exe. In the past, there were differences
in the behavior of the two tools. In Windows XP and Windows Server 2003 the tools are essentially the
same. RegEdt32.exe is a program that runs RegEdit.exe.

To run the Registry Editor, click Start ➪ Run; then type RegEdit in the text box. The Registry Editor
opens. The appearance may differ a little from that shown in Figure 20-1, depending on any recent use of
the Registry Editor. If you recently accessed a specific key in the registry, you will likely be taken back to
that most recently viewed key.

Figure 20-1

As you can see in Figure 20-1, there are five hives in the Windows registry:

❑ HKEY_CLASSES_ROOT — Ensures that the correct application opens if you click on a file in
Windows Explorer; keeps track of file extensions and their associations with file types and pro-
grams. HKEY_CLASSES_ROOT is a subkey of HKEY_LOCAL_MACHINE\Software.

❑ HKEY_CURRENT_USER — Contains configuration for the current logged on user, including the
user’s folders, screen resolution and color settings, and Control Panel settings.

❑ HKEY_LOCAL_MACHINE — Contains configuration settings for the local machine that apply to
any user.

❑ HKEY_USERS — Contains configuration information for active user profiles.
HKEY_CURRENT_USER is a subkey of HKEY_USERS, although it is displayed as a separate hive in
the Registry Editor.

❑ HKEY_CURRENT_CONFIG — Contains information about the hardware profile used at system
startup.

Windows PowerShell supports access to the HKEY_CURRENT_USER, and HKEY_LOCAL_MACHINE hives.

Before you change anything in the registry Microsoft recommends that you backup the registry and also
take time to understand what you need to do to be able to restore a working registry.

456

Part II: Putting Windows PowerShell to Work

25_946939 ch20.qxp 3/15/07 7:10 PM Page 456

At the time of writing, Microsoft has a Knowledgebase article on backing up and restoring the registry
on Windows XP and Windows 2003 at http://support.microsoft.com/kb/322756, including links
to related articles. The article includes detailed instructions about how to export selected registry sub-
keys to back them up and how to back up the whole registry.

In the Registry Editor, the visual metaphor is similar to the metaphor for folders and files in Windows
Explorer. In the left pane, click on a + sign to expand a container. When you click on the name of an item
in the left pane, any corresponding information is displayed in the right pane.

Since the registry is a database it has allowed types. These are summarized briefly in the following table.

Type Data Type Description

Binary value REG_BINARY Raw binary data.

DWORD value REG_DWORD Data represented by a 32-bit integer.

Expandable String value REG_EXPAND_SZ A variable-length data string.

Multi-string value REG_MULTI_SZ A string that contains multiple values sepa-
rated by spaces, commas, or other characters.

String value REG_SZ A fixed-length string.

Binary value REG_RESOURCE_LIST Nested arrays designed to store a resource
list for use by, for example, a hardware
device driver. Displayed as hexadecimal in
the Registry Editor.

Binary value REG_RESOURCE_ Nested arrays designed to store a device
REQUIREMENTS_LIST driver’s list of possible hardware resources.

Binary value REG_FULL_RESOURCE_ Nested arrays used by a hardware device.
DESCRIPTOR

None REG_NONE Data with no specified type. Displayed by
the Registry Editor as hexadecimal.

Link REG_LINK A Unicode string naming a symbolic link.

QWORD value REG_QWORD Data represented by a 64-bit integer.

Many applications have keys whose values are of the type REG_DWORD (32-bit integer) or REG_SZ (fixed-
length string). Figure 20-2 shows the keys for the Notepad application. Since Notepad can be configured
for each user, it is found in the HKEY_CURRENT_USER hive.

Figure 20-2 shows how you can add a new key, using the Registry Editor.

457

Chapter 20: Working with the Registry

25_946939 ch20.qxp 3/15/07 7:10 PM Page 457

Figure 20-2

Exploring the Registry Using Windows
PowerShell

Windows PowerShell makes it relatively straightforward to navigate the two supported registry hives. It
allows you to select a registry hive as if it were a drive and then navigate around the hierarchy in the
chosen hive as if you were navigating a hierarchy of folders and files.

Selecting a Hive
Navigating to a selected hive is straightforward. To navigate to the HKLM hive, use this command:

set-location HKLM:

or:

cd HKLM:

458

Part II: Putting Windows PowerShell to Work

25_946939 ch20.qxp 3/15/07 7:10 PM Page 458

To navigate to the HKCU hive, use this command:

set-location HKCU:

or:

cd HKCU:

It’s important that you include the colon character after the drive name. If you don’t, then you’ll receive
an error message, as shown in Figure 20-3.

Set-Location : Cannot find path ‘HKCU:\HKLM’ because it does not exist.
At line:1 char:3
+ cd <<<< HKLM

In the absence of a colon character, what you intend as a drive name is interpreted as a path relative to
the current drive.

Figure 20-3

Navigating to a Desired Key
Information about how Windows PowerShell is configured to run (or not) scripts is contained in the
HKEY_LOCAL_MACHINE\Software\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell
key. As you can see in Figure 20-4, this includes the execution policy for Windows PowerShell scripts, set
on this particular development machine, to RemoteSigned. Notice that the location of the
PowerShell.exe file is also set there.

Figure 20-4

459

Chapter 20: Working with the Registry

25_946939 ch20.qxp 3/15/07 7:10 PM Page 459

To display the value of the ExecutionPolicy key, follow these commands. They will work wherever
you start from using one of the Windows PowerShell providers.

First navigate to the root of the HKLM drive:

set-location HKLM:\

Next navigate to the ShellIds key:

set-location Software\Microsoft\PowerShell\1\ShellIds

Finally, retrieve all the properties:

get-itemproperty *

The result of executing the preceding commands is shown in Figure 20-5. Notice that some of the
displayed properties have a PS prefix and are PowerShell-specific. Other properties, such as
ExecutionPolicy and Path, correspond to the properties you saw in the Registry Editor in Figure 20-4.

Figure 20-5

There is a seeming inconsistency in the values for the execution policy, but this is due to the value being
set both for ShellIds and for the Microsoft.PowerShell keys. If you use the get-itemproperty
cmdlet with the following fully qualified paths, you can see that the value for ExecutionPolicy is dif-
ferent in the two locations:

get-itemproperty HKLM:\Software\Microsoft\PowerShell\1\ShellIds\
Microsoft.PowerShell

and:

get-itemproperty HKLM:\Software\Microsoft\PowerShell\1\ShellIds

The ExecutionPolicy for ShellIds is Restricted, but this is overridden by the ExecutionPolicy
for Microsoft.PowerShell (the console you typically see after installing Windows PowerShell), which
is RemoteSigned on the machine whose data is shown in Figure 20-6.

460

Part II: Putting Windows PowerShell to Work

25_946939 ch20.qxp 3/15/07 7:10 PM Page 460

Figure 20-6

When you modify the execution policy using the set-executionPolicy cmdlet, it is the
value for ExecutionPolicy at HKLM:\Software\Microsoft\PowerShell\1\ShellIds\
Microsoft.PowerShell that is changed. Similarly, the get-executionPolicy cmdlet retrieves
the value at that location.

Changing the Registry
The first thing to say about changing anything in the registry is that you need to be sure that you know
what you’re doing. The registry is enormous, so becoming familiar with the meaning of registry keys and
values takes a significant amount of time. If you don’t understand the effect of a change you make in the
registry, you are risking creating a machine that won’t run correctly or at all. Please take note of the advice
I gave you earlier in the chapter about making a registry backup before tinkering in the registry.

The following example changes the default behavior of Notepad on my machine from opening with no
status bar to opening with a status bar. In Figure 20-2, the value for the StatusBar key is 0, meaning
that Notepad opens with no status bar. The following command displays the same information:

get-itemproperty HKCU:\Software\Microsoft\Notepad –Name StatusBar

To set the value of StatusBar to 1, use the following command:

set-itemproperty HKCU:\Software\Microsoft\Notepad –Name StatusBar –Value 1

To confirm that the change has been made to the StatusBar property, run this command again:

get-itemproperty HKCU:\Software\Microsoft\Notepad –Name StatusBar

Launch Notepad and observe that a status bar is now displayed.

461

Chapter 20: Working with the Registry

25_946939 ch20.qxp 3/15/07 7:10 PM Page 461

To set the value of StatusBar back to 0, use the following command:

set-itemproperty HKCU:\Software\Microsoft\Notepad –Property StatusBar –Value 0

You can see in Figure 20-7 the execution of the preceding commands. Launch Notepad again and
observe that it now launches without a status bar.

Figure 20-7

In Figure 20-8 I show two Notepad windows. The rear window was opened when the value of
StatusBar was set to 1. You can see that the Notepad window has a status bar. The front Notepad was
opened after I set the value of StatusBar back to 0. As you can see in Figure 20-8, that window has no
status bar.

Figure 20-8

If you want to follow in the Registry Editor changes produced by Windows PowerShell be aware that
those changes are not always reflected immediately in the values displayed in the Registry Editor. If you
close and restart the Registry Editor, the changes you make from Windows PowerShell will be consis-
tently displayed.

462

Part II: Putting Windows PowerShell to Work

25_946939 ch20.qxp 3/15/07 7:10 PM Page 462

To add a dummy key to the Notepad key in HKCU:\Software\Microsoft\Notepad, execute these
commands:

cd HKCU:\Software\Microsoft\Notepad
new-item DummyKey

Notice in Figure 20-9 that the information about the newly added key is displayed when the new-item
cmdlet is executed.

Figure 20-9

The remove-item cmdlet is used to delete keys. Use this with great care! You can use the –whatif
parameter to see the effect of a command before executing it.

remove-item DummyKey –whatif

You can see in Figure 20-9 the information displayed when you execute the preceding command. It’s
also a good idea to use a fully qualified path to ensure that you know exactly what you are targeting.

463

Chapter 20: Working with the Registry

25_946939 ch20.qxp 3/15/07 7:10 PM Page 463

To delete the DummyKey key added using the preceding commands, remove the –whatif parameter and
execute the command. To confirm that the DummyKey key has been deleted, use the following command:

get-childitem

since the DummyKey key is a child of the Notepad key.

Once you appreciate how to explore properties in the registry and how to change and create keys and
values, how you use Windows PowerShell to work with the registry depends on your knowledge of the
registry keys and how you need to use them.

Summary
The Windows registry stores important information that supports the startup and running of machines
with modern Windows operating systems. The Registry Editor allows you to inspect and manipulate
keys and values in the registry.

You can use the set-location cmdlet to navigate around the registry. Use the get-itemproperty
cmdlet to inspect values in a key. Use the set-itemproperty cmdlet to change values.

Use the new-item cmdlet to create a new key in the registry. Use the remove-item cmdlet to remove a
key from the registry. Use the remove-item cmdlet with great care. Test out possible deletions by using
the –whatif parameter to see what a command does before deciding whether or not to execute it.

464

Part II: Putting Windows PowerShell to Work

25_946939 ch20.qxp 3/15/07 7:10 PM Page 464

Working with Environment
Variables

Like the file system and registry, Windows PowerShell provides a command shell provider and
corresponding drive that allows you to explore and manipulate environment variables. An envi-
ronment variable is a value that can affect how the operating system or processes run.

Working with environment variables is simpler in some respects than working with the file system
or the registry, since the environment variables are not stored in a hierarchy inside the env drive
unlike the hierarchy of objects in the file system or registry. In the env drive, it is as if all Windows
files were stored in the root folder. It is inappropriate, then, for example, to use the Recurse
parameter when using the get-childitem cmdlet in the env drive that you might use with a
drive associated with the FileSystem provider.

Another limitation when using the env drive is that you cannot make permanent changes in envi-
ronment variables. Changes you make to environment variables are limited to the duration of the
relevant MSH session and apply only to that session.

Environment Variables Overview
Environment variables are strings that contain information about a Windows system and/or about
the configuration for the currently logged on user. This can affect how the operating system or
individual processes behave. When Windows is being installed it configures environment vari-
ables, for example the path to the Windows files is contained in the windir environment variable.
To see the value for the windir variable in Windows PowerShell, use the following command:

get-childitem var:windir

26_946939 ch21.qxp 3/15/07 7:10 PM Page 465

Alternatively, you can access the windir environment variable using this command:

$env:windir

As you can see in Figure 21-1, the value for the windir environment variable on my machine is
C:\Windows.

Figure 21-1

To modify system environment variables, you must have administrator privileges. In addition to system
environment variables such as windir, individual applications may create their own environment vari-
ables or users may specify environment variables.

To access information about environment variables using the Windows graphical user interface, select
Start ➪ My Computer then right-click and select Properties. On the System Properties dialog box, select
the Advanced tab, which is shown in Figure 21-2.

Figure 21-2

466

Part II: Putting Windows PowerShell to Work

26_946939 ch21.qxp 3/15/07 7:10 PM Page 466

On the Advanced tab click the Environment Variables button, which is shown moused in Figure 21-2.
The Environment Variables dialog box shown in Figure 21-3 opens.

Figure 21-3

As you can see in Figure 21-3, the environment variables are divided into User Environment Variables
and System Environment Variables. The User Environment Variables are specific to a particular user. The
System Environment Variables apply to all users. Each category has buttons to allow a user to create a
new variable, edit an existing variable, or delete an existing variable.

The interface to allow editing can be clumsy. For example, select the PATH system environment variable;
then click the Edit button. The Edit System Variable dialog box shown in Figure 21-4 opens. Only part of
the value of the PATH system environment variable is displayed, making it difficult to see the current
value of the PATH variable and, particularly, when you need to add a lengthy path, it is also difficult to
see the full path you have added to the variable’s value.

Figure 21-4

467

Chapter 21: Working with Environment Variables

26_946939 ch21.qxp 3/15/07 7:10 PM Page 467

However, often the value for the PATH variable is very long, as you can see in Figure 21-5, where the
value for the PATH environment variable is displayed in Windows PowerShell using the command:

get-childitem env:PATH |
format-list

Figure 21-5

The way that the value of the PATH environment variable is displayed in Figure 21-5 isn’t very readable
either. Since the component parts of the value of the PATH environment variable are simply strings, you
can use methods of the String class to display the individual components of the PATH environment
variable and improve readability. Use the following command to display each folder on a separate line:

$env:PATH.ToString().Split(‘;’)

When referencing an environment variable using the $ notation above you do not use a cmdlet.
Conversely, when you supply the name of an environment variable as the value of a cmdlet’s parameter,
you do not use the $ sign before the environment variable’s name.

The ToString() method converts the object returned by $env:PATH to a string. Then the Split()
method of the String object is used to split the value of the PATH environment variable at each occur-
rence of a semicolon. The character which is the argument to the Split() method determines where the
original string is split. In this case, the value of the PATH variable is split on the occurrence of a semi-
colon. Figure 21-6 shows the directories that make up the PATH environment variable displayed in a
more readable way.

Figure 21-6

The Environment Command Shell Provider
Access to environment variables from Windows PowerShell depends on the Environment command
shell provider. The Environment command shell provider is the interface between Windows PowerShell

468

Part II: Putting Windows PowerShell to Work

26_946939 ch21.qxp 3/15/07 7:10 PM Page 468

and the data store for environment variables. The env: drive containing environment variables is sup-
ported by the Environment command shell provider and is the only drive related to it. The env drive
contains the information about all currently configured environment variables.

To display information about the Environment provider, use this command:

get-psprovider –PSProvider Environment |
format-list

The information displayed by the preceding commands is shown in Figure 21-7. As you can, see the
Environment provider supports a single drive, env.

Figure 21-7

To display the current help file about the Environment provider, use this command:

Help Environment

To display information about the Env drive, use this command:

get-psdrive Env |
format-list

Although Env is a drive, be careful not to include a colon character in the preceding command after the
drive name. Figure 21-8 shows the information displayed about the Env drive after executing the preced-
ing command.

Figure 21-8

469

Chapter 21: Working with Environment Variables

26_946939 ch21.qxp 3/15/07 7:10 PM Page 469

Exploring Environment Variables
Exploring environment variables is straightforward using the get-childitem cmdlet. To see a complete
list of environment variables, use this command from any location:

get-childitem env:*

To sort the environment variables alphabetically and then page the output, use this command:

get-childitem env:* |
sort-object Key |
more

The sort-object cmdlet in the second step of the pipeline sorts the objects passed to it by the first step
of the pipeline in ascending alphabetical order by the value of the Key property. Each environment vari-
able is returned as a System.Collections.DictionaryEntry object. That object’s Key and Value
properties are the most likely to be of interest to you.

Figure 21-9 shows one screen of the environment variables on a Windows XP SP2 machine.

Figure 21-9

Alternatively, to display environment variables and navigate to the env drive, use the get-childitem
cmdlet:

set-location env:
get-childitem * |
sort-object Key |
more

An alternative form of the second command that produces the same results is:

get-childitem * |
sort-object {$_.Key} |
more

470

Part II: Putting Windows PowerShell to Work

26_946939 ch21.qxp 3/15/07 7:10 PM Page 470

You can display information about the environment variables relating to processors using this com-
mand, assuming you are already in the env directory:

get-childitem *process*

Figure 21-10 shows the results of executing the preceding command.

Figure 21-10

To find the properties of environment variables, which are DictionaryEntry objects, use this command:

get-childitem |
get-member

Notice in Figure 21-11 that there is an AliasProperty called Name, so that you can use the alias Name
for the Key property. Each environment variable is essentially a key-value pair, as indicated by the
exposed properties.

Figure 21-11

Modifying Environment Variables
You can modify environment variables but only for the duration of a Windows PowerShell session. The
following example adds a new directory C:\ to the PATH environment variable.

471

Chapter 21: Working with Environment Variables

26_946939 ch21.qxp 3/15/07 7:10 PM Page 471

You can display the folders in the PATH environment variable using the following command:

$env:PATH.ToString().Split(‘;’)

Then assign the current path to the variable $OriginalPath, using this command:

$OriginalPath = $env:PATH

Then a concatenation of $OriginalPath and the literal string “;C:\” is assigned to the PATH environ-
ment variable. The reason for including the semicolon as the first character of the additional path is that
there is no terminating semicolon on the original path. If the value of the PATH environment variable
already is a semicolon, it’s not necessary to have a semicolon as the first character of the additional path.

$env:PATH = ($OriginalPath + “;C:\”)

Finally, I display the new value of the PATH environment variable. Notice in Figure 21-12 that the newly
added directory C:\ is the final directory in the PATH.

Figure 21-12

An alternative syntax to add a new path to the PATH environment variable is shown here:

$env:PATH += “;C:\”

The folders included in the PATH environment variable affect the syntax you use when running a
PowerShell script. If the current directory is not part of the PATH environment variable, you need to use
the syntax:

.\Scriptname

or:

.\Scriptname.ps1

Once you add a folder to the PATH environment variable, you can omit the initial period and backslash,
as shown in this example. I created a simple script, ShowDate.ps1, which contains a single command:

get-date

472

Part II: Putting Windows PowerShell to Work

26_946939 ch21.qxp 3/15/07 7:10 PM Page 472

and saved it in the folder C:\. In a new PowerShell session, the value of the PATH environment variable
does not include C:\. So if you type

ShowDate

you see the following error message:

The term ‘ShowDate’ is not recognized as a cmdlet, function, operable program, or
script file. Verify the term and try
again.
At line:1 char:8
+ ShowDate <<<<

Next, add the folder C:\ to the PATH environment variable using this command:

$env:PATH += “;C:\”

Since the script ShowDate.ps1 is in a folder that is now part of the PATH environment variable, I can
now run the script simply by typing:

ShowDate

As you can see in Figure 21-13, the script now executes and displays the current date and time.

Figure 21-13

Modifying the value of PATH can be useful if you want to run one or more scripts from a particular
folder but want to avoid the bother of typing the full path every time you want to run them.

You need to be keep in mind that any changes made to environment variables apply only to the
current PowerShell session. If, for example, you open a new PowerShell window changes made in
another PowerShell session have no effect. If you want to change the value of an environment variable
routinely when you start PowerShell, then add an appropriate statement to a profile file.

Summary
The values of environment variables are exposed in the env: drive by the Windows PowerShell
Environment provider.

473

Chapter 21: Working with Environment Variables

26_946939 ch21.qxp 3/15/07 7:10 PM Page 473

To retrieve the value of environment variables, you can use the get-childitem cmdlet or use the vari-
able syntax of the form $env:variableName.

To change the value of an environment variable for the duration of a PowerShell session, use the appro-
priate Windows PowerShell assignment operator.

474

Part II: Putting Windows PowerShell to Work

26_946939 ch21.qxp 3/15/07 7:10 PM Page 474

Part III

Language Reference

Chapter 22: Working with Logs

Chapter 23: Working with WMI

27_946939 pt03.qxp 3/15/07 7:10 PM Page 475

27_946939 pt03.qxp 3/15/07 7:10 PM Page 476

Working with Logs

A common administrative task is checking or examining event logs. Event logs contain useful
information about the execution of the Windows system, of applications on a machine and
whether any security issues have occurred. The event logs have a series of categories (entry types)
that indicate the significance of the event being logged.

Windows PowerShell version 1.0 provides one cmdlet that supports event logs: the get-event-
log cmdlet, which displays information from the local machine.

Event Log Basics
If you have spent any significant time working with Windows machines, you will likely have
spent at least some time monitoring the behavior of applications on one or more machines and
checked what errors are logged in time association with system or application malfunction. The
GUI tool to support viewing of events is the Event Viewer. To launch Event Viewer, select Start ➪

Administrative Tools ➪ Event Viewer. Figure 22-1 shows the Event Viewer as seen on a Windows
XP machine with Windows PowerShell installed. Depending on installed software, you may see
additional logs displayed in Event Viewer.

If you had prerelease versions of Windows PowerShell installed, you may see other logs that use
the term PowerShell or Monad. If you install the final release of Windows PowerShell 1.0 on a
machine with no previous installation, the Windows PowerShell log is used. If you installed
Release Candidate 2, the PowerShell log is used and the Windows PowerShell log is ignored.

28_946939 ch22.qxp 3/15/07 7:10 PM Page 477

Figure 22-1

The Application, Security and System logs are routinely present on Windows XP and Windows 2003
machines.

To view the properties of a specified log, select it the left pane of the Event Viewer, then select Action ➪

Properties. The properties dialog box for the selected event log is displayed. Figure 22-2 shows the prop-
erties dialog box for the Windows PowerShell event log on a Windows XP machine.

The default behavior of the Windows PowerShell event log on Windows 2003 or Windows XP machine
is a maximum log size of 15,360KB and overwriting of events as needed.

The Filter tab of the properties dialog for an event log specifies which events in the log are displayed in
the Event Viewer for a given event log. Figure 22-3 shows the default appearance of the Filter tab.

To change the amount of data displayed for an event log, an administrator has to select Action ➪

Properties, then click the Filter tab then check or uncheck checkboxes corresponding to available event
types. Additional selections can be made from the Event Source dropdown. Then yet a further selection
can be made from the Category dropdown. If a particular time window is of interest, start and end times
can be specified using the From and To dialogs. Figure 22-4 shows some of the available options for the
category for an Application event log.

To use the Filter tab to apply filters, a user doesn’t have to have extensive knowledge of the event log
system. However, using the graphical interface can be slow and cumbersome if several filters are to be
applied to give different views of the events that have been logged. A command line option to inspect
event logs such as that provided by the Windows PowerShell get-eventlog cmdlet can be easier and
quicker to use, at least by those who understand the cmdlet’s syntax.

478

Part III: Language Reference

28_946939 ch22.qxp 3/15/07 7:10 PM Page 478

Figure 22-2

Figure 22-3

479

Chapter 22: Working with Logs

28_946939 ch22.qxp 3/15/07 7:10 PM Page 479

Figure 22-4

The get-eventlog Cmdlet
The get-eventlog cmdlet allows you to access information contained in various event logs or to list the
event logs on the local machine.

In Windows PowerShell version 1.0 the get-eventlog cmdlet can access only the local machine. Like
other core Windows PowerShell functionality which doesn’t explicitly use Windows Management
Instrumentation the get-eventlog cmdlet is limited in scope to the local machine. It is likely that a
later version of Windows PowerShell will support retrieval of event log information across a network.

In addition to supporting the common parameters, the get-eventlog cmdlet supports the following
parameters:

❑ LogName — The name of the log whose content is to be retrieved. This is a required parameter,
which is a positional parameter in position 1. It does not support multiple values or wildcards.

❑ Newest — Specifies a number. That number represents how many entries are to be retrieved.

480

Part III: Language Reference

28_946939 ch22.qxp 3/15/07 7:10 PM Page 480

❑ List — Specifies a list of available event logs. This is a named parameter.

❑ AsString — Indicates that the entries in an event log are to be retrieved as string values rather
than as objects. Can be used with the –list parameter.

A simple use of the get-eventlog cmdlet is to display the available event logs on the local machine. To
do that, use this command:

get-eventlog -List

Figure 22-5 shows the event logs available on a Windows XP machine with Windows PowerShell
installed, together with information about their maximum size the action to be carried out when the
event log is full.

Figure 22-5

Fuller information on each available event log can be displayed by combining the preceding command
with the format-list cmdlet in a simple pipeline:

get-eventlog –List |
format-list *

Figure 22-6 shows the information displayed for the Application and Security logs.

Figure 22-6

481

Chapter 22: Working with Logs

28_946939 ch22.qxp 3/15/07 7:10 PM Page 481

To retrieve all the information in a specified event log, use the get-eventlog cmdlet with the –LogName
parameter. For example, to display all information in the Windows PowerShell event log, use this com-
mand. Notice that, since the name of the log includes a space character, that the name must be enclosed
in quotation marks. Alternatively, use paired apostrophes:

get-eventlog –LogName “Windows PowerShell”

or, since the –LogName parameter is a positional parameter:

get-eventlog “Windows PowerShell”

In practice, it is often more convenient to use the preceding command combined with the out-host
cmdlet to page the output:

get-eventlog –LogName “Windows PowerShell” |
out-host –paging

or, its functional equivalent:

get-eventlog –LogName “Windows PowerShell” |
more

Figure 22-7 shows a little of the content on a Windows PowerShell event log on a Windows XP machine.

Figure 22-7

The large volume of information in a typical event log means that you have to filter the information in
some way. One simple technique to explore the available options is to find the members of the event log
of interest using the get-member cmdlet. For example, to find the members of the Windows PowerShell
event log, use this command:

get-eventlog –LogName “Windows PowerShell” |
get-member

Figure 22-8 shows the properties returned by the preceding command.

482

Part III: Language Reference

28_946939 ch22.qxp 3/15/07 7:10 PM Page 482

Figure 22-8

Notice in Figure 22-8 that several of the properties broadly correspond to the columns displayed in
Event Viewer. However, the names of the properties exposed in Windows PowerShell don’t correspond
exactly to the characteristics exposed in the Event Viewer interface or the column headers in Windows
PowerShell’s default layout. For example, in Event Viewer, you see two distinct columns: Date and Time;
in Windows PowerShell’s default layout, the column header for both date and time is Time, and the
property names are TimeGenerated and TimeWritten.

Use the group-object to get an overview of the content of an event log. For example, to find out which
applications have events recorded in the Application event log, use this command:

get-eventlog –LogName Application |
group-object Source

The display of the results can be improved by adding the format-table cmdlet to the pipeline, as in
the following command:

get-eventlog –LogName Application |
group-object Source |
format-table -auto

Figure 22-9 shows the result of running the preceding command. You can see that there is a lot of activity
in the Application log relating to SQL Server.

483

Chapter 22: Working with Logs

28_946939 ch22.qxp 3/15/07 7:10 PM Page 483

Figure 22-9

When events are being logged from several sources, it can help to insert a step using the sort-object
cmdlet as in the following command:

get-eventlog –LogName System |
group-object Source |
sort-object Count –Descending |
format-table -auto

As you can see in Figure 22-10, it is obvious where most events are coming from.

Figure 22-10

Using the preceding command, you know which source(s) are producing large numbers of logged
events, but you don’t have any idea of whether or not you are seeing large number of informational
events logged or more serious events. Using the where-object cmdlet allows you to filter on the entry
type.

484

Part III: Language Reference

28_946939 ch22.qxp 3/15/07 7:10 PM Page 484

The available entry types are listed here:

❑ Information — Indicates the successful operation of, for example, an application or service

❑ Warning — Indicates an event that may not necessarily be significant but which could indicate
a current or future problem

❑ Error — Indicates a significant problem, for example the failure of a service to start

❑ Success Audit — An audited security access attempt that succeeds

❑ Failure Audit — An audited security access attempt that fails

One approach is to exclude Information entry types from the results. The command to do that looks
like this:

get-eventlog –LogName System |
where-object {$_.EntryType –ne “Information”} |
group-object Source |
sort-object Count –Descending |
format-table -auto

As you can see in Figure 22-11, the number of events logged that are not informational is reduced signifi-
cantly compared to the total logged events in Figure 22-10. For some sources of events, such as Service
Control Manager, all events appear to be informational.

The second step of the pipeline consists of this command:

where-object {$_.EntryType –ne “Information”}

The value of the EntryType property of each object passed along the pipeline is compared to the string
literal Information. If the value of the EntryType property is not equal to the specified string literal,
the object is passed to the next step of the pipeline. Otherwise it is discarded.

Figure 22-11

Modifying the second step of the pipeline shown in the preceding code to be

where-object {$_.EntryType –eq “Error”}

485

Chapter 22: Working with Logs

28_946939 ch22.qxp 3/15/07 7:10 PM Page 485

allows you to filter out all entries, except those where the entry type is Error. The full command then is:

get-eventlog -LogName System |
where-object {$_.EntryType -eq “Error”} |
group-object Source |
sort-object Count –Descending |
format-table -auto

As you can see in Figure 22-12, you now have a tight handle on which sources have been producing
errors on the system.

Figure 22-12

You might only be interested in recent events. You can also filtered by date and time. The get-eventlog
cmdlet offers the -Newest parameter. However, that is limited in what it can do. For example, the fol-
lowing command displays the most recent 20 events in the Application event log:

get-eventlog –LogName Application –Newest 20

Depending on circumstances, every one of the newest 20 entries may be of the Information entry type
which, almost certainly, are the events you are going to be least interested in.

However, you can create a pipeline that uses the where-object cmdlet to filter on entry type, then use
the select-object cmdlet (with its First parameter) to display only the newest FailureAudit
events.

The following command (which assumes you have SQL Server installed)

get-eventlog -LogName Application |
where-object {$_.Source -eq “MSSQLSERVER”} |
where-object {$_.EntryType -eq “FailureAudit”} |
select-object -first 1 |
format-list

486

Part III: Language Reference

28_946939 ch22.qxp 3/15/07 7:10 PM Page 486

uses the where-object cmdlet in the second step of the pipeline to discard all objects, except those
where the value of the Source property is equal to MSSQLSERVER, in other words you select objects
where the events have been generated by the default instance of Microsoft SQL Server. (If you don’t
have SQL Server installed replace appropriately in the second pipeline step.) In the third step of the
pipeline, the where-object cmdlet is used to select only Error events. At this stage, all objects passed to
the fourth step of the pipeline represent errors generated by Microsoft SQL Server. The fourth step of the
pipeline uses the select-object cmdlet to display the first error object. The default behavior is to dis-
play the most recent error object.

Figure 22-13 shows the output from the preceding command.

Figure 22-13

Normally, you use the select-object cmdlet on a sorted list. In this case, you don’t need to add a
sort-object step to the pipeline since, by default, the objects are sorted with highest Index (that is
most recent) first. Notice that the Index for the event displayed in Figure 22-13 is 47019. You can confirm
that the most recent error object has been selected using the following command, which displays all
error events generated by the default instance of Microsoft SQL Server:

get-eventlog -LogName Application |
where-object {$_.Source -eq “MSSQLSERVER”} |
where-object {$_.EntryType -eq “FailureAudit”} |
select-object –first 15 |
format-table -auto

In Figure 22-14, you can confirm that the Index 47019 corresponds to the most recently generated error
event from the default instance of Microsoft SQL Server. The format-table cmdlet is used to demon-
strate unambiguously that the event displayed in Figure 22-13 is the most recent event.

487

Chapter 22: Working with Logs

28_946939 ch22.qxp 3/15/07 7:10 PM Page 487

Figure 22-14

If you feel that you want a greater level of certainty that you are retrieving the most recent events, you
can add another step to the pipeline, which uses the sort-object cmdlet to explicitly sort objects by
the TimeGenerated property:

get-eventlog -LogName Application |
where-object {$_.Source -eq “MSSQLSERVER”} |
where-object {$_.EntryType -eq “Error”} |
sort-object TimeGenerated -descending |
select-object -first 15 |
format-table Index, TimeGenerated -auto

In the preceding command, the fourth step in the pipeline uses the sort-object cmdlet. By default, the
sort-object cmdlet displays the lowest value first. In the context of the TimeGenerated property, that
means that the oldest events are sorted to be first. Using the descending parameter causes the most
recent events to be sorted to be first. Therefore, when the objects are passed to the select-object
cmdlet in the penultimate pipeline step, it is the most recent 15 events that are selected for display.
Figure 22-15 shows the results of running the command.

Figure 22-15

488

Part III: Language Reference

28_946939 ch22.qxp 3/15/07 7:10 PM Page 488

To demonstrate filtering by time generated, I will use Information events, since those are conveniently
spaced on my test machine. The following command shows Information events relating to SQL Server
(adapt this for another application if you don’t have SQL Server installed):

get-eventlog Application |
where-object {$_.Source -eq “MSSQLSERVER”} |
where-object {$_.EntryType -eq “Information”}

As you can see in Figure 22-16, events were generated on several dates in November and December. The
TimeGenerated property can also be used to filter events by date. In the following command, an addi-
tional pipeline step has been added to display only events generated after November 27th.

get-eventlog -LogName Application |
where-object {$_.Source -eq “MSSQLSERVER”} |
where-object {$_.EntryType -eq “Information”} |
where-object {$_.TimeGenerated -gt “2006/11/27”} |
sort-object TimeGenerated -descending |
select-object -first 15 |
format-table -auto

Figure 22-16

The new step uses the where-object cmdlet to filter by the value of the TimeGenerated property. As
you can see in Figure 22-17, only events that occurred after 00:00:01 on November 27th that were dis-
played in Figure 22-16 are now displayed.

Figure 22-17

489

Chapter 22: Working with Logs

28_946939 ch22.qxp 3/15/07 7:11 PM Page 489

You can also combine conditions when filtering using the where-object cmdlet. For example, the fol-
lowing code displays events occurring between November 25th and November 30th. Notice that each
condition is contained in parentheses. The conditions are combined using the and parameter of the
where-object cmdlet.

get-eventlog -LogName Application |
where-object {$_.Source -eq “MSSQLSERVER”} |
where-object {$_.EntryType –eq “Information” } |
where-object {($_.TimeGenerated –gt “2006/11/25”) -and ($_.TimeGenerated -lt
“2006/11/30”)} |
sort-object TimeGenerated -descending |
format-table -auto

When using the and parameter with the where-object cmdlet, be sure to remember to include the
hyphen before it.

Figure 22-18 shows the results of running the preceding code.

Figure 22-18

It is also possible to filter to, for example, display events which have occurred in a preceding time
period. For example, to display events occurring in the last five days, you could use this command:

get-eventlog -LogName Application |
where-object {$_.Source -eq “MSSQLSERVER”} |
where-object {$_.EntryType -ne “Information”} |
where-object {$_.TimeGenerated -gt (get-date).AddHours(-120)} |
sort-object TimeGenerated -descending |
format-table Index, TimeGenerated

I added the third step in the pipeline to reduce the number of events to be displayed. The fourth step in
the pipeline uses the get-date cmdlet to retrieve the current date and time. Then the AddHours()
method is used to calculate the time five days before. Since the operator used is the gt operator, objects

490

Part III: Language Reference

28_946939 ch22.qxp 3/15/07 7:11 PM Page 490

are selected that represent events that occurred since 120 hours ago, that is they occurred in the last
five days.

Figure 22-19 shows part of the results returned by the preceding command.

Figure 22-19

The commands

get-date

and

(get-date).AddHours(-120)

retrieve the date and time that were current when I wrote this section and the date and time five days
previously. Similarly, you can use the AddDays() method, as in the following example command:

(get-date).AddDays(-10)

Figure 22-20 shows the relevant values at the time I was completing the writing of this chapter.

Figure 22-20

491

Chapter 22: Working with Logs

28_946939 ch22.qxp 3/15/07 7:11 PM Page 491

The examples so far in this chapter have shown you how to display selected events onscreen. However,
you can also store textual information in a file. For example, the following command stores part of the
information about the 20 most recent events on the system I am using to write this chapter:

get-eventlog Application -Newest 20 |
out-file “C:\Pro PowerShell\Chapter 22\ApplNewest20.evt”

The first step of the pipeline uses the Newest parameter of the get-eventlog cmdlet to select only the
20 newest events in the Application event log. The second step of the pipeline uses the out-file cmdlet
to write the information passed to it to the file C:\Pro PowerShell\Chapter 22\ApplNewest20.evt.
Figure 22-21 shows the content of the file in Notepad. Notice, however, that the content of some columns
is truncated, reflecting how it would have been displayed onscreen. The file ApplNewest20.evt is a
text file not suitable for opening in the Event Viewer.

Figure 22-21

Alternatively, you could use the get-content cmdlet to read the file’s content:

get-content “C:\Pro PowerShell\Chapter 22\ApplNewest20.evt”

In version 1.0 of Windows PowerShell, there is no cmdlet to write an event log, perhaps filtered accord-
ing to specified criteria, to a file in such a way that the Event Viewer can make use of the file.

Microsoft has tools like SQL Server 2005 Profiler that are specialized for tracing what happens during
execution of a particular application. Windows PowerShell allows you to create a simple event recorder
for Windows PowerShell scripts. The following example script illustrates the principle of how you could
use this approach.

The file CustomLogCreator.ps1, which illustrates the kind of thing you can do, is shown here:

$startTime = get-date

read-host(“Start a new PowerShell instance then press the Return key.”)

get-eventlog “Windows PowerShell” |
where-object {$_.TimeGenerated -gt $startTime} |
format-table |
out-file “C:\Pro PowerShell\Chapter 22\LogStartup.txt”

492

Part III: Language Reference

28_946939 ch22.qxp 3/15/07 7:11 PM Page 492

In the first line of the script, the get-date cmdlet is used to find the current time and assign it to the
variable $startTime. The read-host cmdlet is used to pause the script. Separately, a new instance of
Windows PowerShell is started manually then the Return key is pressed. That is done to raise events
that occur during Windows PowerShell startup. Those events are logged in the Windows PowerShell
event log.

The statement using the get-event log then accesses the Windows PowerShell event log. In the second
step of the pipeline, the where-object cmdlet is used to filter events in the Windows PowerShell event
log so that only events that have occurred since the date and time were assigned to the $startTime
variable are selected. Those events are formatted as a table using the format-table cmdlet. In the final
step of the pipeline, the out-file cmdlet is used to write a text representation of those events to the file
LogStartup.txt.

Figure 22-22 shows the table of information displayed in Notepad.

Figure 22-22

Another possibility is to incorporate some part(s) of the date and time in the filename of the custom log.
The following modified example, CustomLogCreator2.ps1, uses the Month and Day properties of the
$startTime variable to create a file LogStartup122.txt, since I ran the code on December 2nd. This
approach would work if you had a folder containing multiple log files from each month.

$startTime = get-date

read-host(“Start a new PowerShell instance then press the Return key.”)

get-eventlog “Windows PowerShell” | where-object {$_.TimeGenerated -gt $startTime}
|

format-table |
out-file “C:\Pro PowerShell\Chapter
22\LogStartup$($startTime.Month)$($startTime.Day).txt”

Of course, you can use a greater part of the available date and time information from $startTime to
create unique filenames.

493

Chapter 22: Working with Logs

28_946939 ch22.qxp 3/15/07 7:11 PM Page 493

The example illustrates the principle. In place of the read-host cmdlet in the preceding script, you
could carry out any Windows PowerShell task or set of tasks and collect the information in a file.

Another approach would be to use the Application log and use the Windows PowerShell script to auto-
mate, say, a COM application and store the logged events during the time of interest in a separate file,
which might make close scrutiny of what happens when you run the application easy.

The eventquery.vbs script found in the C:\Windows\System32 directory allows you to examine
event logs on remote machines. A later version of Windows PowerShell is likely to provide functionality
at least equivalent to that provided by eventquery.vbs.

Summary
The get-eventlog cmdlet allows you to list the event logs available on the local machine and to inspect
the content of a local event log of interest.

Using the where-object, sort-object, group-object and other cmdlets together with the properties
of the EventLogEntry object you can filter events to focus on events of particular interest to you.

494

Part III: Language Reference

28_946939 ch22.qxp 3/15/07 7:11 PM Page 494

Working with WMI

In Windows PowerShell version 1.0, the range of available cmdlets is significant, but they cover
only part of the tasks that a fully developed administrative command shell and scripting language
need to cover. To fill that potential gap the PowerShell approach in version 1.0 includes support of
existing technologies until such time as later versions of PowerShell provide fuller system cover-
age. In fact, PowerShell may continue to support existing technologies for longer than is strictly
necessary, but in version 1.0 that support of legacy technologies is essential to plug the gaps that
version 1.0 PowerShell cmdlets don’t cover.

Another approach used alongside the Web distribution of PowerShell 1.0 is the release of special-
ized cmdlets designed for specific problem domains. The first such group of cmdlets is intended
for use with Microsoft Exchange 2007. It is likely that other Microsoft management technologies
will later have their own set of functionally related cmdlets.

One of the most important ways that PowerShell exploits existing technologies is to allow devel-
opers access to Windows Management Instrumentation, WMI, through the get-wmiobject
cmdlet. One gap in PowerShell version 1.0 functionality is that the cmdlets in the PowerShell Web
release can access resources only on the local machine. To access remote resources using
PowerShell, it is initially necessary to make use of legacy technologies. Windows Management
Instrumentation provides a way to achieve access to resources on remote machines.

Depending on your preferences or current knowledge (or already existing WMI scripts), you may
opt to use PowerShell exclusively for what it already does in version 1.0 or progressively transi-
tion WMI scripts that use VBScript to a PowerShell context where the functionality in PowerShell
version 1.0 makes that transition possible. However, if you need to access remote machines on
your network, you have to use the get-wmiobject cmdlet in PowerShell version 1.0, since
PowerShell doesn’t natively support remote machine access.

29_946939 ch23.qxp 3/15/07 7:11 PM Page 495

Introducing Windows Management
Instrumentation

Windows Management Instrumentation is a systems management technology that you can use to man-
age a local Windows computer or remote computers. In fact, using WMI is the only way to manage a
remote Windows computer using PowerShell version 1.0.

The philosophy behind the creation of Widows Management Instrumentation was similar to the think-
ing applied in PowerShell. Recognition that using graphical tools can be repetitive and inefficient gave
rise to a search for more efficient ways of executing tasks that have to be carried out on one machine
multiple times or on multiple machines. The development of WMI took place in the broader context of
the development of an approach to distributed management of computers. The Distributed Management
Task Force, DMTF, drew up specifications for a cross-platform approach to distributed management of
computers making use of the Web-based enterprise management, WBEM, in which Microsoft was
involved.

The arrival of WMI gave administrators of Windows machines the ability to access system information
and to configure and manage multiple machines. Before WMI the scripting languages that administra-
tors used were unable to manage Windows functionality, since direct access to Windows 32 APIs was
required and that wasn’t generally supported using the available scripting languages.

WMI supports management of Windows 2003, Windows XP, and Windows 2000 machines. WMI and
Windows Script Host enables administrators to use scripting languages such as Microsoft VBScript or
ActiveState’s ActivePerl, or any other scripting language that supports COM automation, to carry out
administrative tasks.

WMI can, broadly, be considered as consisting of three layers (from the bottom up):

❑ Managed resources — Applications, devices, systems

❑ WMI infrastructure — WMI Scripting Library, CIM Object Manager, WMI Provider, Common
Information Model

❑ WMI consumers — WMI scripts and graphical applications that use WMI under the covers

An application can be both a WMI provider and a WMI consumer. Examples include Application
Center 2000 and Systems Management Server.

In the following sections, I will briefly describe each of these layers.

Managed Resources
A managed resource is any physical or logical system component that is exposed to Windows
Management Instrumentation and can be managed by it. The range of managed resources is extensive.
The following table lists a number of the resources that you can use WMI to manage.

The term “managed” in the WMI term “managed resource” does not have the connotation that the term
“managed” has when applied to “managed code,” that is, code created in a .NET language.

496

Part III: Language Reference

29_946939 ch23.qxp 3/15/07 7:11 PM Page 496

Type of resource/information WMI class

Windows services Win32_Service

Window processes Win32_Process

CPU Win32_Processor

Date and Time Win32_Date

WMI Infrastructure
The WMI infrastructure, visualized as the middle of the three layers mentioned earlier, consists primar-
ily of the Common Information Model Object Manager, CIMOM, the Common Information Model
repository and WMI providers. In addition the middle layer includes the WMI Script Library.

WMI Script Library
The WMI Script Library contains several automation objects. Scripting languages such as VBScript and
JScript use those automation objects to access the WMI functionality. These automation objects provide a
consistent scripting model, making scripting WMI an easier task than working directly with the
Windows APIs.

The Scripting Library makes it straightforward to write simple WMI scripts. The following script,
GetServices.vbs, displays the name of services on the local machine.

strComputer = “.”

Set wbemServices = GetObject(“winmgmts:\\” & strComputer)
Set wbemObjectSet = wbemServices.InstancesOf(“Win32_Service”)

For Each wbemObject In wbemObjectSet
WScript.Echo “Service Name: “ & wbemObject.Name

Next

The second line of the script assigns the WMI service to the wbemServices variable. The value supplied
to the InstancesOf() method, in this case Win32_Service, specifies what objects are of interest. By
specifying another WMI class for the argument to the InstancesOf() method, you can explore other
parts of the Windows system. The For loop displays a simple label with the name of each object in the
wbemObjectSet variable.

To run the script, use this command:

cscript GetServices.vbs

Figure 23-1 shows part of the results returned.

497

Chapter 23: Working with WMI

29_946939 ch23.qxp 3/15/07 7:11 PM Page 497

Figure 23-1

By specifying other properties of the relevant WMI object, you can display additional or alternative
information onscreen.

In addition to providing objects that you will use often in VBScript scripts, the WMI Script Library
includes a type library that allows you to use WMI constants in your scripts.

CIM Object Manager
The Common Information Model Object Manager controls the interaction between WMI providers and
consumers. All WMI requests from WMI consumers are processed through the CIMOM. On Windows
XP and Windows Server 2003, the CIMOM is implemented through winmgmt.exe, which is run under
the service host, svchost.exe.

In addition to its coordinating role CIMOM also provides the following support to WMI:

❑ Event processing — Enables a WMI consumer to subscribe to selected events on a WMI man-
aged resource.

❑ Provider registration — Registers WMI providers’ location and functionality.

❑ Query Processing — Supports a WMI consumer querying a WMI managed resource. The
query is in WMI Query Language, WQL.

❑ Request Routing — The CIMOM sends requests to the appropriate registered WMI provider.

❑ Remote access — WMI consumers connect to the CIMOM on a remote system to access WMI
managed resources.

❑ Security — The CIMOM provides access control for WMI managed resources.

498

Part III: Language Reference

29_946939 ch23.qxp 3/15/07 7:11 PM Page 498

The CIM Repository
The CIM Repository contains the schema that represents configuration and management information.
Each class in the CIM repository represents WMI managed resources. The schema in the CIM repository
is based on the Common Information Model developed by the Distributed Management Task Force.

Classes in the CIM repository are grouped in namespaces. The root\cimv2 namespace contains many
classes associated with a computer and its operating system. The Win32_Service class that I used in the
example earlier in this chapter is in the root\cimv2 namespace.

WMI Providers
WMI providers communicate with WMI managed resources and CIMOM. Providers request informa-
tion from managed resources and send information from WMI consumers to managed resources. WMI
providers conceal from WMI consumers details of the Win32 APIs.

Information on WMI providers can be found online at http://msdn2.microsoft.com/en-us/
library/aa394570.aspx . It is also included in the documentation for the WMI Toolkit.

WMI Consumers
WMI consumers are WMI VBScript files or Web-based or Windows-based GUI management applica-
tions that use WMI under the covers. In the context of this chapter, PowerShell can be considered a WMI
consumer, since the get-wmiobject cmdlet uses WMI objects to carry out tasks.

WMI Tools
If you are unfamiliar with WMI, getting a grip on the many objects that form part of the Common
Information Model can be a daunting task. Microsoft makes some WMI tools available that can help you
explore WMI.

The WMI tools can be downloaded from www.microsoft.com/downloads/details
.aspx?FamilyID=6430f853-1120-48db-8cc5-f2abdc3ed314&DisplayLang=en.

The CIM Studio allows you to explore a specified namespace. Figure 23-2 shows the root\cimv2
namespace opened in CIM Studio. In the right pane, you can readily study the properties of a selected
class.

499

Chapter 23: Working with WMI

29_946939 ch23.qxp 3/15/07 7:11 PM Page 499

Figure 23-2

Notice in the left pane that the Win32_CurrentTime class is selected. In the right pane you can see the
properties for that class.

In order to use the CIM Studio and CIM Object Browser in Internet Explorer, you may have to modify
security settings or specifically allow active content each time you use these utilities.

The WMI Object Browser, shown in Figure 23-3, allows you to explore the values for the properties of a
class in a specified namespace as they apply to a specific machine.

500

Part III: Language Reference

29_946939 ch23.qxp 3/15/07 7:11 PM Page 500

Figure 23-3

The Associations tab in the WMI Object Browser, shown in Figure 23-4, can allow you to explore visually
how objects are related. Sometimes this can be very helpful in understanding object hierarchies. At other
times, the visual display needs a little more thought.

The CIM Studio and CIM Object Explorer can be handy tools to explore WMI. In time you will find that
using PowerShell is also an efficient way to explore these classes, even if it lacks the nice graphical out-
put of the native WMI tools.

501

Chapter 23: Working with WMI

29_946939 ch23.qxp 3/15/07 7:11 PM Page 501

Figure 23-4

Using the get-wmiobject Cmdlet
The get-wmiobject cmdlet is the single cmdlet in PowerShell version 1.0 to allow you to retrieve WMI-
based information. There is no comparable set-wmiobject cmdlet, at least not in PowerShell version 1.0.

Using WMI or the get-wmiobject cmdlet to access information from a local or remote computer
makes the assumption that you have appropriate privileges to carry out the required tasks. WMI also
needs to be installed on the target computer.

To display the definition of the get-wmiobject cmdlet, use the following command:

(get-command get-wmiobject).definition

As you can see in Figure 23-5, there are essentially two overloads for the get-wmiobject cmdlet. If you
use the class parameter, you are selecting a WMI class (or classes) on a specified machine and then dis-
playing properties or manipulating those properties in some way. If you use the list parameter, you are

502

Part III: Language Reference

29_946939 ch23.qxp 3/15/07 7:11 PM Page 502

exploring what classes are present in a specified namespace. Broadly, these approaches correspond to
what you can do with the WMI Object Browser and CIM Studio, respectively.

Figure 23-5

In addition to the common parameters, the get-wmiobject supports the following parameters.

❑ Class — Specifies a WMI class whose properties are of interest. This is a required parameter. It
is a positional parameter in position 1. Wildcards are not allowed. If the List parameter is speci-
fied, the Class parameter is not permitted.

❑ Property — Specifies the property or properties of interest from the WMI class specified using
the Class parameter. It is a positional parameter in position 2. The default value, if no value is
explicitly supplied, is the wildcard *, which matches all properties of the WMI class.

❑ Namespace — Specifies the WMI namespace of interest. An optional, named parameter. The
default value of this parameter is root\cimv2.

❑ ComputerName — Specifies the computer or computers where the command is to be run. This
is an optional, named parameter. The default value, if no value is supplied, is localhost.

❑ Filter — Specifies filter elements as supported by providers. This is an optional, named
parameter with no default value.

❑ Credential — Specifies a credential to be used. If a PSCredential object is supplied from an
earlier pipeline step, it is used as is. If a user name is supplied as the value of the Credential
parameter, the user is prompted for a password.

❑ List — Displays a list of available WMI classes. This is an optional, named parameter. If the
List parameter is used, the Class parameter must not be used.

❑ Query — Specifies a WMI Query Language (WQL) statement to run. Event queries are not sup-
ported.

To demonstrate simple use of the get-wmiobject, execute the following command, which retrieves
information about the current date and time:

get-wmiobject –Class Win32_CurrentTime –ComputerName .

The results returned are displayed in Figure 23-6. Notice that two sets of results are displayed. The first
takes account of daylight savings time settings. Compare the value of the Hour property in the two sets
of property values.

503

Chapter 23: Working with WMI

29_946939 ch23.qxp 3/15/07 7:11 PM Page 503

Figure 23-6

Also execute the get-date cmdlet, and compare the results to those shown in Figure 23-6:

get-date |
format-list *

Figure 23-7 shows the results. The key difference is that in Figure 23-6 you are seeing the properties of a
WMI class. In Figure 23-7 you are seeing the properties of a .NET object.

Figure 23-7

504

Part III: Language Reference

29_946939 ch23.qxp 3/15/07 7:11 PM Page 504

Several issues arise. A WMI object is not a .NET object. The list of available properties is different. Even
where a WMI property and a .NET object property have the same name they may be of different
datatypes. For example, execute the following two commands and compare the value of the DayOfWeek
property in each result.

get-wmiobject –Class Win32_CurrentTime –ComputerName . |
format-table Year, DayOfWeek -auto

and

get-date |
format-table Year, DayOfWeek -auto

Figure 23-8

Use the following commands to display the datatypes of a relevant WMI object or .NET object:

get-wmiobject –Class Win32_CurrentTime –ComputerName . | get-member
get-date | get-member

The DayofWeek property for the WMI class is a SystemUInt32. The DayOfWeek property of the object
produced by the get-date cmdlet is a System.DayOfWeek.

One of the advantages of PowerShell becomes obvious pretty quickly if you type in the following code,
contained in the file GetDate.vbs:

strComputer = “.”

Set wbemServices = GetObject(“winmgmts:\\” & strComputer)
Set wbemObjectSet = wbemServices.InstancesOf(“Win32_CurrentTime”)

For Each wbemObject In wbemObjectSet
WScript.Echo “Day: “ & wbemObject.Day & vbCrLf & _

“DayOfWeek: “ & wbemObject.DayOfWeek & vbCrLf & _
“Month: “ & wbemObject.Month & vbCrLf & _
“Year: “ & wbemObject.Year

Next

505

Chapter 23: Working with WMI

29_946939 ch23.qxp 3/15/07 7:11 PM Page 505

It quickly becomes tedious to type in multiple property names and manually add carriage returns and
continuation characters. You run the command by typing

cscript GetDate.vbs

assuming that the GetDate.vbs file is in the current directory:

The equivalent PowerShell command

get-wmiobject –Class Win32_CurrentTime –ComputerName . | format-list Day,
DayOfWeek, Month, Year

is much easier to type. Even when you are using WMI classes the PowerShell formatting cmdlets can
provide ease of use. And, of course, you can test and refine the PowerShell commands on the command
line then later, if appropriate, incorporate them into a script file.

In the following sections, I will illustrate some ways in which you can use the get-wmiobject cmdlet.
Since there are literally hundreds of WMI classes, I can only give you a hint of the range of things you
can do to exploit the power of the get-wmiobject cmdlet.

Finding WMI Classes and Members
You can find a list of the WMI classes on the local machine by using the following command:

get-wmiobject –List –ComputerName .

If you run the command in that simple form, you will see multiple screens of information scroll past
your eyes. If you use the where-object cmdlet, you can get some control over what is displayed. For
example, you can filter the results based on WMI namespace. The following command filters classes
from the root\cimv2 namespace. It also uses the more alias to display one screen of results at a time.

get-wmiobject –List –ComputerName . |
where-object {$_.__Namespace –eq “root\cimv2”} |
more

Figure 23-9 shows the result of executing the preceding command.

506

Part III: Language Reference

29_946939 ch23.qxp 3/15/07 7:11 PM Page 506

Figure 23-9

Adding another pipeline step using the where-object cmdlet to filter on objects that contain the char-
acter sequence Win32, then an underscore character gives us WMI classes likely to be of immediate rele-
vance. Using the sort-object cmdlet sorts the results by the name of the WMI class. The modified
command looks like this. I have split it across multiple lines to help you see the pipeline steps clearly.

get-wmiobject -List -ComputerName . |
where-object {$_.__Namespace -eq “root\cimv2”} |
where-object {$_.Name -match “Win32_.*”} |
sort-object Name |
format-table Name |
more

Figure 23-10 shows the results of executing the preceding command.

Figure 23-10

507

Chapter 23: Working with WMI

29_946939 ch23.qxp 3/15/07 7:11 PM Page 507

A similar set of commands can reveal the total number of WMI classes supported in PowerShell version
1.0. Execute each of these commands in turn:

(get-wmiobject -List).count

(get-wmiobject -List |
where-object {$_.__Namespace -eq “root\cimv2”}).count

(get-wmiobject -List |
where-object {$_.__Namespace -eq “root\cimv2”} |
where-object {$_.Name -match “^Win32_.*”}).count

The first command uses the count property to determine the number of WMI classes that PowerShell
supports in the root\cimv2 namespace. As you can see in Figure 23-11, it is 1019 in the build I was
using when writing this chapter. The second command then counts the number of WMI classes in the
root\cimv2 namespace. The number returned is the same, since no Namespace parameter was speci-
fied in the command and the default value for the Namespace parameter is root\cimv2. The third com-
mand filters the classes in the root\cimv2 namespace so that only those whose Name property begins
with Win32_ are counted. The regular expression pattern used with the where-object cmdlet uses the
^ metacharacter to specify that Win32_ matches at the beginning of the class’s name. The pattern .*
matches zero or more characters. Taken together, the pattern ^Win32_.* means “starting at the begin-
ning of the value attempt to match Win32_ literally then match zero or more other characters.” More
simply, “match names that begin with Win32_”.

Figure 23-11

Often the name of a WMI class is fairly informative. For example, it is no surprise that the
Win32_Process class retrieves information about processes running on a machine. Similarly,
the Win32_BIOS class displays information about the BIOS. Since there are over 1,000 classes in the
root\cimv2 namespace alone, I won’t attempt to cover available classes in any depth. The PowerShell
commands and the WMI tools already described allow you to explore the WMI classes in depth, if you
want to.

On the build that I am using some uses of the get-wmiobject intermittently hang the PowerShell
window that they are executed in. At the time of writing, the cause of these hangs is unclear. Closing
the PowerShell window and starting a new instance sometimes resolves the issue. Another approach is
to stop and restart the WMI service.

Once you identify a WMI class, you will typically want to work with a selected subset of its properties. If
you’re not using WMI routinely, you will need to be able to discover the members for the WMI objects

508

Part III: Language Reference

29_946939 ch23.qxp 3/15/07 7:11 PM Page 508

that the get-wmiobject cmdlet gives you access to. The get-member cmdlet allows you to do that. The
following command finds and displays the members of the Win32_Process class and pages the results
onscreen.

get-wmiobject Win32_Process |
get-member | more

The memberType parameter allows you to focus only on, for example, properties or methods. The fol-
lowing command filters to display only the methods of the Win32_Process class and display them
onscreen.

get-wmiobject Win32_Process |
get-member –memberType method |
more

Figure 23-12 shows the first screen of results.

Figure 23-12

To display the properties of the Win32_Process class, simply modify the command as follows.

get-wmiobject Win32_Process |
get-member –memberType property | more

Exploring a Windows System
Now that you have seen the basics of how the get-wmiobject cmdlet can be used and know how to
explore the root/cimv2 namespace, I will illustrate some of the ways in which you can use the get-
wmiobject cmdlet to explore the characteristics of a Windows system.

Characterizing the CPU
To characterize the CPU on a system, you can use the Win32_Processor class in the root\cimv2
namespace. The following command retrieves information about the processor on the local machine:

get-wmiobject Win32_Processor |
format-list Name, MaxClockSpeed, AddressWidth, Description

509

Chapter 23: Working with WMI

29_946939 ch23.qxp 3/15/07 7:11 PM Page 509

The first step of the pipeline uses the Win32_Processor class to find all processors on the local
machine. The ComputerName parameter is not expressed. However, its default value of localhost is
assumed by the PowerShell processor. The second step displays the values of the Name, MaxClockSpeed,
AddressWidth, and Description properties of the object(s) passed to it by the first pipeline step.

Figure 23-13 shows the results on a machine with a dual-core Athlon processor. Notice that the proper-
ties of each processor are reported separately. Notice, too, the disparity between the numerics displayed
in the CPU’s name and the value of the MaxClockSpeed property.

Figure 23-13

Finding Memory
One of the advantages of using PowerShell with WMI is that you can write scripts significantly more
succinctly using PowerShell. For example, if you used WMI and VBScript to find out how much RAM
has been installed on the local machine, you might write a script like GetLocalMemory.vbs:

strComputer = “.”

Set wbemServices = GetObject(“winmgmts:\\” & strComputer)
Set wbemObjectSet =

wbemServices.InstancesOf(“Win32_LogicalMemoryConfiguration”)

For Each wbemObject In wbemObjectSet
WScript.Echo “Total Physical Memory (kb): “ &

wbemObject.TotalPhysicalMemory
Next

To run that script using the cscript utility, you would use a command like the following:

cscript “C:\Pro PowerShell\Chapter 23\GetLocalMemory.vbs”

Of course, you could have typed in each line of the script at the command prompt. However, the
PowerShell script to do the same can be written much more succinctly:

get-wmiobject Win32_LogicalMemoryConfiguration –ComputerName .

510

Part III: Language Reference

29_946939 ch23.qxp 3/15/07 7:11 PM Page 510

Figure 23-14 shows the execution of the two approaches.

Figure 23-14

In addition to exploring the logical memory, you can also explore physical memory by using the
Win32_PhysicalMemory class. The following command returns selected information on the banks of
physical memory on the local machine.

get-wmiobject Win32_PhysicalMemory |
format-table BankLabel, Capacity, Tag, PositionInRow, DataWidth

Notice in Figure 23-15 that there are two banks of memory each of capacity 1GB on the machine being
examined.

Figure 23-15

As well as exploring RAM, you can also find out information about the cache on the CPU. To do that,
you use the Win32_CacheMemory class. The following command finds the cache memory for each pro-
cessor on the local machine and displays selected properties:

get-wmiobject Win32_CacheMemory |
format-table DeviceID, CacheType, Purpose, InstalledSize

Figure 23-16 shows the results of executing the preceding command on a machine with a dual-core
Athlon processor.

511

Chapter 23: Working with WMI

29_946939 ch23.qxp 3/15/07 7:11 PM Page 511

Figure 23-16

Exploring Services
To use the get-wmiobject cmdlet to explore services, you specify Win32_Service class as the value of
the Class parameter. Using the get-wmiobject, you can explore services on a remote machine.

The following command returns selected information about all the services on the local machine:

get-wmiobject Win32_Service |
format-table Name, ProcessID, State

To selectively display information about running services that relate to SQL Server, you can use the fol-
lowing command:

get-wmiobject Win32_Service -ComputerName . |
where-object {$_.State –eq “Running”} |
where-object {$_.Name -match “.*SQL.*”} |
sort-object StartMode |
format-table Name, ProcessID, State, StartMode

The first step of the pipeline simply returns all services on the local machine. In the second step of the
pipeline, the where-object cmdlet is used to filter objects where the value of the State property is
Running. The third step of the pipeline filters objects based on a regular expression pattern. Only objects
for which the value of the Name property contains the character sequence SQL are passed to the fourth
step of the pipeline. In the fourth step of the pipeline, objects are sorted according to the value of the
StartMode property. The final step in the pipeline displays the name, process ID, state, and start mode
of each service whose properties pass the tests in the second and third steps of the pipeline.

The output of the preceding command is shown in Figure 23-17 for a Windows XP machine with SQL
Server 2005 installed.

512

Part III: Language Reference

29_946939 ch23.qxp 3/15/07 7:11 PM Page 512

Figure 23-17

By omitting the third step in the pipeline, you can display information about all running services on the
local machine.

Exploring Remote Machines
As I mentioned earlier in this chapter, WMI enables PowerShell version 1.0 to access and inspect remote
machines. WMI must be installed on the remote machine you want to inspect, and you must have rele-
vant permissions to access information on any remote machine accessed in this way.

The following commands enable you to display information about the hard drives on two remote
machines. Substitute the names of machines on your network in these examples:

get-wmiobject –Class Win32_LogicalDisk –ComputerName Adonis |
where-object {$_.DriveType –eq 3}

and:

get-wmiobject –Class Win32_LogicalDisk –ComputerName Helios |
where-object {$_.DriveType –eq 3}

The second step of the pipeline specifies that the drive type is 3. That type is a hard drive.

It’s not necessary to type a separate command for each machine. You can list multiple machines as the
value for the ComputerName parameter separated by commas. The following command retrieves infor-
mation about hard drives on the two machines previously accessed. The data is formatted using the
format-table cmdlet so that it would look tidy even if you retrieved information from many machines.

get-wmiobject –Class Win32_LogicalDisk –ComputerName Adonis, Helios |
where-object {$_.DriveType –eq 3} |
format-table __SERVER, DeviceID, Size

Once you can access multiple machines, you can then use the get-wmiobject cmdlet for real-life admin
purposes. The following example looks for machines with free space on the hard drives below a speci-
fied threshold. The initial command simply returns freespace and other properties from all specified
machines:

513

Chapter 23: Working with WMI

29_946939 ch23.qxp 3/15/07 7:11 PM Page 513

get-wmiobject –Class Win32_LogicalDisk –ComputerName Adonis, Helios |
where-object {$_.DriveType –eq 3} |
format-table __SERVER, DeviceID, FreeSpace, Size

Adding a second step using a where-object cmdlet only displays information on machines where free
space is less than a specified threshold. In this case, if the free space is less than 170GB, the machine on
which such a drive is present is displayed.

get-wmiobject –Class Win32_LogicalDisk –ComputerName Adonis, Helios |
where-object {$_.DriveType –eq 3} |
where-object {$_.FreeSpace –lt 170000000000} |
format-table __SERVER, DeviceID, FreeSpace, Size

This command detects machines with less than 170GB free space on any hard drive.

The scope for using WMI to explore the characteristics of local and remote machines is almost limitless. I
hope I have given you a flavor of what is possible. Time invested in understanding WMI will let you
explore solutions specific to your own needs.

Summary
Windows PowerShell version 1.0 typically allows you to access only the local machine with limited
access to shared locations on other machines on the network. To achieve greater access to networked
machines, you can make use of Windows Management Instrumentation functionality from Windows
PowerShell using the get-wmiobject cmdlet. In this chapter, I have shown you how you can make use
of the get-wmiobject cmdlet to access the local machine and remote machines.

514

Part III: Language Reference

29_946939 ch23.qxp 3/15/07 7:11 PM Page 514

In
de

x

Index

SYMBOLS
& (ampersand), at beginning of command, 65, 68
‘ (apostrophe), 119, 416, 431–432
= (assignment operator), 72, 220–222
* (asterisk)

as multiplication operator, 218, 219
in .* pattern, 54, 80
as wildcard character, 12, 48, 49, 59, 72, 73, 125,

171–173, 200, 202
@ (at sign), in associative arrays, 249
\ (backslash), at beginning of commands, 23, 472
^ (caret)

as metacharacter, 81, 85, 290, 357, 508
in $^ variable, 61

: (colon), 196, 346, 375, 469
, (comma), 121
{} (curly braces), for designating script blocks, 71–72
/ (division operator), 218, 219
$ (dollar sign)

at beginning of expression, 64, 65
in $$ variable, 61

- (minus sign)
in assignment operator, 220
as subtraction operator, 218, 219
in unary operators, 226–227

-! (-not operator), 225
() (parentheses)

role in parsing, 64
using with methods, 264

% (percent sign), in assignment operator, 220, 221
. (period)

for running PowerShell scripts, 23, 472
when using PowerShell command mode, 64–66, 68

| (pipeline)
default formatter, 151–154
defined, 78
examples, 13, 14, 19–20, 41–42
grouping objects, 83–85
layout, 19
.NET objects in, 35–38, 57
overview, 19–20, 78–85
past limitations, 56–57
role in sorting objects, 81–83
separators in, 13, 78
sequence of commands, 78–81
symbol, 19, 78
syntax, 19

+ (plus sign)
as addition operator, 218, 219, 248
in assignment operators, 220
in unary operators, 226–227

? (question mark)
in $? variable, 61
as wildcard, 59, 72, 125, 171

“ (quotation mark, double)
at beginning of expression, 64, 65
in commands, 71, 431–432
parameters and, 119–120

‘ (quotation mark, single), 119, 416, 431–432
> (redirection operator), 18, 41, 407, 445–446
>> (redirection operator), 199, 445–446
; (semicolon), 20, 198
/ (slash)

in assignment operator, 220, 221
in division operator, 218, 219

30_946939 bindex.qxp 3/15/07 7:11 PM Page 515

[] (square brackets)
in PowerShell syntax for indicating .NET elements, 34,

268, 324
in syntax for designating array elements, 236
in wildcard searches, 59, 290, 429

- (subtraction operator), 218, 219
- (unary operator), 226–227
-- (unary operator), 226–227
$_ (underscore) variable, 61, 71

A
abbreviated commands, 76–78
Access, as COM application, 303–305
Active Directory, 50
$AD variable, 60
add-content cmdlet, 93
add-history cmdlet, 92
addition operator (+), 218, 219, 248
add-member cmdlet, 95
add-psSnapin cmdlet, 92
administrators, setting execution policies for, 372, 373
Alias provider, 48, 184, 185, 346
aliases

as abbreviations for cmdlets, 77–78
background, 51–52
creating, 108–111
default, 101
displaying lists, 52–53, 107–108, 346
as drives, 48, 346–347
finding, 101–102, 347–348
list of PowerShell cmdlets for working with, 348
overview, 48–49, 77–78, 100–101
in scripts, 87
in WMI command line utility, 51–52

AllSigned execution policy
defined, 207
as security issue, 372, 373, 374
signed scripts and, 209
unsigned scripts and, 208

ampersand (&), at beginning of command, 65, 68
-and operator, 225
apostrophe (‘), 119, 416, 431–432
-append parameter, 449
application domain, current, 353–357
Application log, 478
$Args variable, 61
-argumentList parameter

for new-object cmdlet, 311, 314, 315, 316–317
for trace-command cmdlet, 419

-arguments parameter, 294

arithmetic operators, 217, 218–219
arrays

adding elements, 242
associative, 249–250
concatenating, 248
creating, 235–239
defined, 235
modifying structure, 241–245
naming, 236
shortening elements, 242–243
typed, 239–240
working from end, 245–247

-asSecureString parameter, 212, 213
assemblies, finding, 354–355
assignment operator

equals sign (=), 72, 220–222
minus sign (-), 220
percent sign (%), 220, 221
plus sign (+), 220
slash (/), 220, 221

associative arrays, 249–250
-asString parameter, 481
asterisk (*)

as multiplication operator, 218, 219
in .* pattern, 54, 80
as wildcard character, 12, 48, 49, 59, 72, 73, 125,

171–173, 200, 202
at sign (@), in associative arrays, 249
automatic variables, 60–62
-autoSize parameter, 155, 157
-average parameter, 201

B
-backgroundColor parameter, 215, 216
backslash (\), at beginning of commands, 23, 472
-band operator, 79
batch files (.bat)

limitations, 28
maintenance, 28
versus scripting languages, 28

-begin parameter, 261
-bor operator, 79
break statement, 394, 395

C
C#, upgrade path to, 58
caret (^)

as metacharacter, 81, 85, 290, 357, 508
in $^ variable, 61

516

[] (square brackets)

30_946939 bindex.qxp 3/15/07 7:11 PM Page 516

case
.NET Framework and, 18, 326–327
in PowerShell cmdlets, 18, 92, 327

-category parameter, 400
-categoryActivity parameter, 400
-categoryReason parameter, 400
-categoryTargetName parameter, 400
-categoryTargetType parameter, 400
-ccontains operator, 80
cd alias, 49
-ceq operator, 80, 223
Certificate namespace, 374–376
-certificate parameter, 377
Certificate provider, 184, 185, 346
certificates

code-signing, 376–379
creating, 376–377
as drives, 51, 374–375, 376
finding, 377–378

-cge operator, 79, 223
-cgt operator, 79, 223
-character parameter, 201
child items, obtaining, 55. See also get-childItem

cmdlet
-childPath parameter, 452
CIM repository, 499
CIM Studio tool, 499–500
CIMOM (Common Information Model Object Manager),

497, 498
classes, .NET Framework

calling, 34
displaying by using get-member, 35, 36
finding information about, 324–333
library, 36, 37–38

-cle operator, 79, 223
clear command, 17
clear-content cmdlet, 93
clear-host cmdlet, 17
clear-item cmdlet, 93
clear-itemProperty cmdlet, 93
clear-variable cmdlet, 95, 231–232
-clike operator, 80, 223
Clone() method, 257, 265
closing Windows PowerShell, 10
cls cmdlet, 18, 52
-clt operator, 79, 223
-cmatch operator, 80, 224
CMD.exe

background, 27
exiting PowerShell to prompt, 10
limitations, 27–29

versus PowerShell, 428, 455
similarity of PowerShell to prompt, 17

CmdletInfo object, 152, 153
cmdlets

aliases for abbreviating, 77–78
availability, 11–12, 75–76
case-insensitivity, 18, 92, 327
combining in pipelines, 19–20, 78–85
completing by using Tab key, 76–77, 112–113,

443–444
cycling through recently used, 18
defined, 11
exploring, 11–14
for file actions, 449–450
finding, 11–14
finding parameters, 121–124
focusing search, 12
getting help with, 14–17
getting recent-use history, 18
grouping, 83–85
naming scheme, 57–58, 85
overview, 20–21
parameters and, 117–131
separator between, 20
syntax, 20–21
testing combinations, 21–23
verbosity issue, 85–87
verbs as, 13
viewing list, 11–12
ways to abbreviate, 76–78
for working with paths, 450–453

-cne operator, 80, 223
-cnotcontains operator, 80
-cnotlike operator, 80, 224
-cnotmatch operator, 80, 224
code debugging

handling syntax errors, 403–408
as PowerShell feature, 59
set-psDebug cmdlet, 408–413
tracing, 418–423
write-psDebug cmdlet, 413–418

colon (:), 196, 346, 375, 469
COM (Component Object Model)

accessing, 56
creating objects by using new-object cmdlet,

293–294
Internet Explorer and, 294–299
Microsoft Access and, 303–305
Microsoft Excel and, 302–303
Microsoft Word and, 301–302
network shares and, 305–306

517

COM (Component Object Model)

In
de

x

30_946939 bindex.qxp 3/15/07 7:11 PM Page 517

COM (Component Object Model) (continued)
object scripting, 43–44
PowerShell support, 293
role of synthetic types, 306–308
specific applications and, 294–308
Windows Script Host and, 30, 299–301

comma (,), 121
command line, PowerShell

applying in exploratory way, 39–41
approaches to parsing, 63–69
batch file tools versus scripting languages, 28
command mode versus expression mode, 63–69
existing utilities, 53–55
tool history, 26–27
tool inconsistency, 28
using utilities from, 54
Windows utilities, 53–55

command mode
examples, 66–69
versus expression mode, 63–65
mixing expressions with, 69

-command parameter, 419
-Command PowerShell startup option, 10
command prompt

>> as, 19
creating, 113–115
customizing, 113–115

command shell providers. See providers
commands, PowerShell, using Tab key to complete,

76–77, 112–113, 443–444. See also cmdlets;
scripts, PowerShell

Common Information Model Object Manager (CIMOM),
497, 498

-comObject parameter, 43, 56, 294, 311
Compare() method, 265, 268–270
compare-object cmdlet, 95
CompareTo() method, 265, 271
comparing strings, 268–271
comparison operators, 217, 222–224
completing commands by using Tab key

cmdlet examples, 443–444
as PowerShell abbreviated command form, 76–77
registry example, 112–113
when not to use, 113

Component Object Model (COM)
accessing, 56
creating objects by using new-object cmdlet,

293–294
Internet Explorer and, 294–299
Microsoft Access and, 303–305

Microsoft Excel and, 302–303
Microsoft Word and, 301–302
network shares and, 305–306
object scripting, 43–44
PowerShell support, 293
role of synthetic types, 306–308
specific applications and, 294–308
Windows Script Host and, 30, 299–301

concatenated strings, 65
concatenating arrays, 248
conditional expressions, 250–256
-confirm parameter

for clear-variable cmdlet, 231
as common parameter, 132, 165, 166
for new-item cmdlet, 203
for new-psDrive cmdlet, 204
for new-variable cmdlet, 229
for remove-psDrive cmdlet, 187
for remove-variable cmdlet, 233
for set-authenticodeSignature cmdlet, 377
for set-executionPolicy cmdlet, 371
for set-variable cmdlet, 228
for stop-service cmdlet, 180–181

$ConfirmPreference variable, 61
console files, loading, 90
$ConsoleFileName variable, 61
Constant option, 348–349, 388
consumers, WMI, 499
Contains() method, 265, 271–272
-contains operator, 79
continue statement, 394–395
ConvertFrom-SecureString cmdlet, 94
convert-path cmdlet, 93, 450
ConvertTo-html cmdlet, 95
ConvertTo-SecureString cmdlet, 94
copying strings, 267
copy-item cmdlet, 93
copy-itemProperty cmdlet, 93
CopyTo() method, 265, 272–273
core library, .NET, 355–358
Core snapin, 90–92
count property, 21, 22
CPUs. See Win32_Processor WMI class
-credential parameter

for get-content cmdlet, 197
for join-path cmdlet, 452
for new-item cmdlet, 203, 204
for remove-item cmdlet, 167
for resolve-path cmdlet, 453
for test-path cmdlet, 451

518

COM (Component Object Model) (continued)

30_946939 bindex.qxp 3/15/07 7:11 PM Page 518

curly braces ({}), for designating script blocks, 71–72
current application domain, 353–357
current working location, system state information,

338, 340–341
CurrentDomain property, 354
custom drives, 447–448

D
data stores, as drives, 45
databases, accessing data in Access databases from

PowerShell command line, 303–305
date and time examples, 22, 34–38
DateTime object

creating by casting strings, 318–319
creating by using new-cmdlet cmdlet, 312–317
role in casting strings, 288–289
ToString() method, 22

DayOfWeek property, 288
-debug parameter, 132
-debugger parameter, 419
debugging code

handling syntax errors, 403–408
as PowerShell feature, 59
set-psDebug cmdlet, 408–413
tracing, 418–423
write-psDebug cmdlet, 413–418

$DebugPreference variable, 61, 414, 415
decimal point (.)

for running PowerShell scripts, 23, 72
when using PowerShell command mode, 64, 65, 66, 68

default formatter, 151–154
default option, 255–256
Definition property, 323, 349
-delimiter parameter, 197, 198
-description parameter

for new-psDrive cmdlet, 204
for new-variable cmdlet, 229
for set-variable cmdlet, 228

developers, setting execution policies for, 372, 373
dir alias, 47, 48, 52, 55, 78, 433
DirectoryInfo object, 434–435
-displayErrors parameter, 156
-displayName parameter, 178
division operator (/), 218, 219
dollar sign ($)

at beginning of expression, 64, 65
in $$ variable, 61

DOS machines, 26

dot (.) notation
for running PowerShell scripts, 23, 72
when using PowerShell command mode, 64, 65, 66, 68

do/while statement, 259–260
drives. See also get-psDrive cmdlet

aliases as, 48, 346–347
certificates as, 51, 346, 374–375, 376
creating, 187, 204–205
custom, creating, 447–448
defined, 45
finding, 434
finding information about, 425–426
in fully qualified path names, 427
functions as, 349–350
mapping, 305–306
namespaces as, 45–51
PowerShell definition, 45
relationship to providers, 45, 186
removing, 94, 187–188
variables as, 49, 346, 350

E
elseif clause, 252–253
-encoding parameter

for get-content cmdlet, 197
for out-file cmdlet, 449

-end parameter, 261
end users, setting execution policies for, 372, 373
EndsWith() method, 265, 273–274
Environment provider, 184, 185, 346, 351, 468–469
environment variables

defined, 465
editing information about, 467–468
exploring by using get-childItem cmdlet, 470–471
finding information about, 466–467
modifying, 466, 471–473
overview, 465–468
as PowerShell tool, 351–353

-eq operator
as comparison operator, 223
versus = operator, 72
using with where-object cmdlet, 79, 144

equal sign (=), as assignment operator, 72, 220–222.
See also -eq operator

Equals() method, 265, 274–275
error handling, system state information, 338, 345–346
$Error variable, 61, 383–387, 388

519

$Error variable

In
de

x

30_946939 bindex.qxp 3/15/07 7:11 PM Page 519

-errorAction parameter, as common parameter,
132, 397–398

$ErrorActionPreference variable, 61, 390–392,
397, 398

-errorId parameter, 400
-errorRecord parameter, 400
errors

nonterminating, 381, 382, 392
related variables, 345–346, 383–392
syntax, 403–423
system, 381–401
terminating, 381, 382
trapping, 392–397

-errorVariable parameter, as common parameter,
132, 399

$ErrorView variable, 61, 389–390
event logs

displaying entries in Windows Event Viewer, 478
displaying entries onscreen by using PowerShell,

480–492
overview, 477–480
PowerShell versions, 477
writing entries to file, 492–494

Event Viewer
Filter tab, 478, 479
opening, 477
viewing logs, 478

Excel, as COM application, 302–303
-exception parameter, 400
Exchange Management Shell, 50
Exchange Server 2007, 38, 39, 50
exclamation point, in -! operator, 225
-exclude parameter

for clear-variable cmdlet, 231
for get-childitem cmdlet, 191
for get-content cmdlet, 197
for get-variable cmdlet, 230
for remove-item cmdlet, 167
for remove-variable cmdlet, 232
for set-variable cmdlet, 228
for stop-service cmdlet, 178
for test-path cmdlet, 451

-excludeProperty parameter, 144
execution policies

checking by using get-executionPolicy cmdlet,
209–212

defined, 207
enabling scripts by using set-executionPolicy

cmdlet, 9, 23
overview, 207–209
as security issue, 370–374

$ExecutionContext variable, 61
-executionPolicy parameter, 371, 373
exiting Windows PowerShell, 10
-expand parameter, 156
-expandProperty parameter, 144, 146
export-alias cmdlet, 95, 105–106, 348
export-clixml cmdlet, 95
export-console cmdlet, 92
export-csv cmdlet, 95
expression mode

versus command mode, 63–65
examples, 65–66
mixing commands with, 69

-expression parameter, 419
expressions

conditional, 250–256
regular, 289–291

extended wildcards, 59–60

F
$False variable, 61
file system

cmdlets for file actions, 449–450
finding file characteristics, 436–439
finding files and folders, 425, 427–431
finding hidden files, 442–443
removing items, 166–175

FileInfo object
retrieving, 434, 435
select-object cmdlet and, 440, 441
working with methods, 436–437
working with properties, 438–439

-filePath parameter
for out-file cmdlet, 449
for set-authenticodeSignature cmdlet, 377,

378
for trace-command cmdlet, 419

files and folders
finding, 434–436
finding file characteristics, 436–439

FileSystem provider
defined, 184, 185, 346, 425
multiple drives and, 195–196
overview, 45, 46, 47, 426

-filter parameter
for get-childitem cmdlet, 191
for get-content cmdlet, 197
for remove-item cmdlet, 167
for test-path cmdlet, 451

520

-errorAction parameter

30_946939 bindex.qxp 3/15/07 7:11 PM Page 520

filtering processes
using where-object cmdlet, 41, 71–75, 79–81,

137–144
using wildcards, 72–73

filters, 349–350
-filterScript parameter, 138, 142–143
finding

aliases, 101–102, 138, 347–348
assemblies, 354–355
certificates, 377–378
cmdlets, 11–14
drives, 434
file characteristics, 436–439
files and folders, 434–436
hidden files, 442–443
information about drives, 425–426
information about environment variables, 466–467
information about .NET classes, 324–333
members of .NET Framework objects by using get-

member cmdlet, 35, 36, 50, 320–323
parameters, 121–124
PowerShell commands, 11–14, 75–76
providers, 183–184, 425
services that are running by using get-service

cmdlet, 74–75, 138–140
Windows processes that are running by using get-

process cmdlet, 69–71
findstr command, 53, 54
-first parameter, 145, 148–150
for statement, 256–258, 382
-force parameter

for clear-variable cmdlet, 231
for format-table cmdlet, 156
for get-childItem cmdlet, 191, 442–443
for get-content cmdlet, 197
for new-item cmdlet, 203
for new-variable cmdlet, 229
for remove-item cmdlet, 166
for remove-psDrive cmdlet, 187
for remove-variable cmdlet, 232
for set-variable cmdlet, 228
for stop-service cmdlet, 178
for trace-command cmdlet, 419

foreach statement, 238, 260–261
foreach-object cmdlet, 92
-foregroundColor parameter, 215, 216
format-custom cmdlet, 95
$FormatEnumerationLimit variable, 61
format-list cmdlet

adding to final pipeline step, 323
defined, 95

displaying information, 57, 186
example, 58
-force parameter in, 386
overview, 161–162

format-table cmdlet
-autoSize parameter in, 157
defined, 95, 155
displaying information, 57
-groupBy parameter in, 158–159
-hideTableHeaders parameter in, 158
list of parameters, 155–156
-property parameter in, 156–157
specifying column labels, 159–161
specifying column widths, 159–161

format-wide cmdlet, 95
-full parameter, 60
FullName property, 355
fully qualified path names, 427–430
Function drive, 349–350, 431
Function provider, 184, 185, 346
functions, 349–350

G
gci alias, 52. See also get-childitem cmdlet
-ge operator, 79, 144, 223
get verb, 57
get-acl cmdlet, 94
get-alias cmdlet

versus Alias provider, 48
defined, 95, 348
overview, 107–108
using to find available aliases, 52
verbosity example, 85–86

GetAssemblies() method, 354
get-authenticodeSignature cmdlet, 94, 376, 378
get_Chars() method, 265, 275
get-childItem cmdlet

aliases, 48–49, 55, 78
defined, 93
versus dir alias, 47
examples, 41–42, 68–69
-force parameter in, 442–443
overview, 191–194
Registry provider and, 47–48
retrieving aliases, 103–104
retrieving environmental variable information, 351–353

get_ChildNodes() method, 289
get-command cmdlet

defined, 92
versus findstr command, 54
using to find commands, 11, 12, 13–14, 20–21, 75–76

521

get-command cmdlet

In
de

x

30_946939 bindex.qxp 3/15/07 7:11 PM Page 521

get-content cmdlet, 21–22, 54, 93, 196–201
get-credential cmdlet, 94
get-culture cmdlet, 95
get_CurrentDomain() method, 354
get-date cmdlet, 21, 22, 36–37, 56, 95, 490–491
GetEnumerator() method, 265
get-eventlog cmdlet, 93, 480–494
get-executionPolicy cmdlet, 94, 371
GetHashCode() method, 265
get-help cmdlet

defined, 92
displaying detail, 60
finding parameters, 121–124
overview, 14–17

get-history cmdlet, 18, 92
get-host cmdlet, 95
get-item cmdlet, 93
get-itemProperty cmdlet, 93
get_Length() method, 265, 275
get-location cmdlet, 93, 194–196, 338–345
get-member cmdlet, 35, 36, 50, 95, 320–323
GetMember() method, 326–328
GetMembers() method, 324–325
GetMethod() method, 329
GetMethods() method, 328–329
get-pfxCertificate cmdlet, 94
get-process cmdlet

defined, 93
filtering results by using where-object cmdlet, 73,

81, 138–140
finding running Windows processes, 69–71
.NET Framework System.Diagnostics.Process

objects and, 34
parameters for, 118–121
in scripting example, 21, 22
sorting processes by using sort-object cmdlet, 81–83

GetProperties() method, 330–331
GetProperty() method, 331–333
get-psDrive cmdlet

defined, 45, 93
versus get-psProvider cmdlet, 102–103
using to find available drives, 184–188

get-psProvider cmdlet
defined, 45, 93
versus get-psDrive cmdlet, 102–103
using to find available providers, 183–184

get-psSnapin cmdlet, 90–91, 92
get-service cmdlet

compared with Services MMC snap-in, 73–74

defined, 57, 93, 357
examples, 125–127
finding running services, 74–75, 138–140
overview, 358–359

get-traceSource cmdlet, 95, 422–423
GetType() method, 265, 276
GetTypeCode() method, 265, 276
get-UICulture cmdlet, 95
get-unique cmdlet, 95
get-variable cmdlet, 95, 230–231
get-wmiObject cmdlet

defined, 93, 502
examples, 503–509
exploring Windows system characteristics,

509–514
finding WMI classes and members, 506–509
list of parameters, 503

graphical user interface (GUI), 26
greater-than operator, 79, 144, 223, 407
greater-than-or-equal-to-operator, 79, 144, 223
-groupBy parameter
format-table cmdlet and, 155, 158–159
group-object cmdlet and, 158–159

group-object cmdlet
defined, 95
examples, 152
overview, 83–85
as verb-noun naming scheme example, 57–58

-gt operator, 79, 144, 223, 407
GUI (graphical user interface), 26

H
help alias, 111–112
help function, 15
-Help PowerShell startup option, 10–11. See also

get-help cmdlet
hidden files, finding, 442–443
-hideTableHeaders parameter, 155, 158
hiding table headers, 158
HKEY_CLASSES_ROOT hive, 456
HKEY_CURRENT_CONFIG hive, 456
HKEY_CURRENT_USER (HKCU) hive, 456, 459,

461–464
HKEY_LOCAL_MACHINE (HKLM) hive, 456, 458,

459–461
HKEY_USERS hive, 456
$Home variable, 61
Host snapin, 90, 93
$Host variable, 61

522

get-content cmdlet

30_946939 bindex.qxp 3/15/07 7:11 PM Page 522

hyphen (-)
in assignment operator, 220
as subtraction operator, 218, 219
in unary operators, 226–227

I
-ieq operator, 224
if statement, 251–254
-ige operator, 224
-ignoreWhitespace parameter, 201
-igt operator, 224
-ile operator, 224
-ilike operator, 224
-ilt operator, 224
-imatch operator, 224
import-alias cmdlet, 95, 108, 348
import-clixml cmdlet, 95
import-csv cmdlet, 95
-include parameter

for clear-variable cmdlet, 231
for get-childitem cmdlet, 191–194
for get-content cmdlet, 197, 200–201
for get-variable cmdlet, 230
for remove-item cmdlet, 167, 173–174
for remove-variable cmdlet, 232
for set-variable cmdlet, 228
for stop-service cmdlet, 178
for test-path cmdlet, 450

-includeChain parameter, 377
IndexOf() method, 265, 277–278
IndexOfAny() method, 265, 277–278
-ine operator, 224
-inotlike operator, 224
-inotmatch operator, 224
$Input variable, 61
-InputFormat PowerShell startup option, 10
-inputObject parameter

for format-table cmdlet, 156
for measure-object cmdlet, 201
for out-file cmdlet, 449
for select-object cmdlet, 145
for where-object cmdlet, 142–143

-inputOption parameter, for trace-command
cmdlet, 419

Insert() method, 265, 278
installing

.NET Framework 2.0, 4–7
Windows PowerShell, 7–8, 368

Internet Explorer
closing, 299
as COM application, 294–299
launching, 294–295
manipulating in PowerShell, 294–299

invoke-expression cmdlet, 95
invoke-history cmdlet, 92
invoke-item cmdlet, 93
-is operator, 79
IsNormalized() method, 265
-isnot operator, 79
-isValid parameter, 451
-itemType parameter, 203

J
join-path cmdlet, 93, 450, 451–452

L
-last parameter, 145, 148–150
LastIndexOf() method, 265, 278–279
LastIndexOfAny() method, 265, 278–279
-le operator, 79, 144, 223
Length property, 241, 245, 266, 440
less-than operator, 79, 144, 223
less-than-or-equal-to operator, 79, 144, 223
-like operator, 79, 144, 223
-line parameter, 201
-list parameter, 481
-listenerOption parameter, for trace-command

cmdlet, 419, 420
-literalName parameter, 185
-literalPath parameter

for get-childItem cmdlet, 191
for push-location cmdlet, 341
for resolve-path cmdlet, 453

logical operators, 218, 225–226
-logName parameter, 480
logs. See event logs
looping, 256–261
ls alias, 52, 78
-lt operator, 79, 144, 223

M
managed resources, 496–497
Management snapin, 90, 93–94
mapping drives, 305–306
-match operator, 54, 79, 80, 108, 144, 223, 289

523

-match operator

In
de

x

30_946939 bindex.qxp 3/15/07 7:11 PM Page 523

-maximum parameter, 201
$MaximumAliasCount variable, 61
$MaximumDriveCount variable, 61
$MaximumErrorCount variable, 61, 387
$MaximumFunctionCount variable, 61
$MaximumHistoryCount variable, 18, 61
$MaximumVariableCount variable, 61
measure-command cmdlet, 95
measure-object cmdlet, 95, 201–203
MemberInfo object, 324, 326
-memberType parameter, 320, 322, 328, 330
memory
Win32_CacheMemory WMI class, 511–512
Win32_PhysicalMemory WMI class, 510–511

-message parameter
for write-debug cmdlet, 414
for write-error cmdlet, 400

metacharacter (^), 81, 85, 290, 357, 508
MethodInfo object, 328, 329
methods

for FileInfo object, 436–437
for finding information about .NET classes, 324–333
for String class, 264–266

Microsoft Access, as COM application, 303–305
Microsoft Excel, as COM application, 302–303
Microsoft Management Console (MMC), 39
Microsoft Word, as COM application, 301–302
Microsoft.Management.Automation.Core

namespace, 425
Microsoft.PowerShell.Core snapin, 90, 91, 92
Microsoft.PowerShell.Host snapin, 90, 93
Microsoft.PowerShell.Management snapin, 90,

93–94
Microsoft.PowerShell.Security snapin, 90, 94
Microsoft.PowerShell.Utility snapin, 90,

95–96
-minimum parameter, 201
minus sign (-)

in assignment operator, 220
as subtraction operator, 218, 219
in unary operators, 226–227

move-item cmdlet, 93
move-itemProperty cmdlet, 93
multiplication operator (*), 218, 219
$MyInvocation variable, 61

N
-name parameter

for clear-variable cmdlet, 231
for get-childItem cmdlet, 191

for get-member cmdlet, 60, 320, 322
for get-process cmdlet, 177
for get-psDrive cmdlet, 185
for get-variable cmdlet, 230
for new-item cmdlet, 203
for new-psDrive cmdlet, 204
for new-variable cmdlet, 229
as positional parameter, 133
for remove-psDrive cmdlet, 187
for remove-variable cmdlet, 232
for set-variable cmdlet, 228
for stop-service cmdlet, 178
for trace-command cmdlet, 419, 420

named parameters, 124–125
namespaces. See also providers

defined, 338
as drives, 45–51
as providers, 346

naming cmdlets, 57–58
-ne operator, 79, 223
-neq operator, 144
$NestedPromptLevel variable, 61
.NET Framework 2.0

as basis for PowerShell architecture, 34–35
calling classes, 34
case sensitivity issue, 18, 326–327
class library, 36, 37–38
COM object types, 306–308
core library, 355–358
creating .NET objects, 311–319
downloading Software Developer’s Kit, 310
finding information about .NET classes, 324–333
future emphasis on, 31
information resources, 310–311
installing, 4–7
matching strings using regular expressions, 54
PowerShell and, 309–311
reflection, 324–333
succinct PowerShell ways to manipulate objects, 56
type system, 306–308

network shares, mapping drives to local machines,
305–306

new verb, 57
new-alias cmdlet, 95, 108–109, 348
-newest parameter, 480
new-item cmdlet, 93, 203–204
new-itemProperty cmdlet, 93
new-object cmdlet
-comObject parameter in, 43, 56, 294, 311
creating new COM objects, 293–294

524

-maximum parameter

30_946939 bindex.qxp 3/15/07 7:11 PM Page 524

creating new .NET objects, 311–317
defined, 95
-strict parameter in, 294, 311
-typeName parameter in, 294, 311, 313

new-psDrive cmdlet, 93, 204–205
new-service cmdlet, 93, 357, 360
new-timespan cmdlet, 95
new-variable cmdlet, 95, 229–230
-noClobber parameter, 449
-NoExit PowerShell startup option, 10
-NoLogo PowerShell startup option, 10
-noNewLine parameter, 214
-NonInteractiver PowerShell startup option, 10
nonterminating errors, 381, 382, 392
-NoProfile PowerShell startup option, 10
Normalize() method, 265
-not operator, 225
-notcontains operator, 79
Notepad

opening files in, 106
saving .psl scripts in, 22

not-equal-to operator (-ne), 79, 223
-notlike operator, 79, 144, 223
-notmatch operator, 79, 144, 223
$now variable, 34–37
$null variable, 62
numbers, at beginning of expression, 63–64

O
-object parameter, 214
objects, measuring properties, 201–203
-off parameter, 408
operators

arithmetic, 217, 218–219
assignment, 72, 217, 220–222
comparison, 217, 222–224
for filtering objects, 79
logical, 218, 225–226
overview, 217–218
precedence, 219–220
redirection, 18, 41, 407, 445–446
special, 218
unary, 218, 226–227
for where-object cmdlet, 144

-option parameter
for new-alias cmdlet, 109, 348
for new-variable cmdlet, 229
for set-alias cmdlet, 348
for set-variable cmdlet, 228
for trace-command cmdlet, 419–420

-or operator, 225

out-default cmdlet, 96
out-file cmdlet, 96, 449–450, 492
out-host cmdlet, 96
out-null cmdlet, 96
out-printer cmdlet, 96
-outputBuffer parameter, 132
-OutputFormat PowerShell startup option, 10
-outputVariable parameter, 132
out-string cmdlet, 96
OverloadDefinitions property, 325

P
PadLeft() method, 265, 279–280
PadRight() method, 265, 279–280
parameters

absence of, 117, 118
for clear-variable cmdlet, 231
common, 132, 397–399
example, 117
finding for cmdlets, 121–124
for format-table cmdlet, 155–156
for get-authenticodeSignature cmdlet, 378
for get-childItem cmdlet, 191
for get-eventlog cmdlet, 480–481
for get-location cmdlet, 195, 196–197, 338–341
for get-member cmdlet, 320–323
for get-process cmdlet, 118–121
for get-psDrive cmdlet, 185
for get-service cmdlet, 358–360
for get-traceSource cmdlet, 422
for get-variable cmdlet, 230
for get-wmiObject cmdlet, 503
for join-path cmdlet, 451–452
list, 132
for measure-object cmdlet, 201
named, 124–125
for new-item cmdlet, 203
for new-object cmdlet, 293–294, 311–317
for new-psDrive cmdlet, 204
for new-service cmdlet, 360–361
for new-variable cmdlet, 229
for out-file cmdlet, 449–450
overview, 117
for pop-location cmdlet, 344–345
positional, 127–130
for push-location cmdlet, 341–344
for remove-item cmdlet, 166–167
for remove-psDrive cmdlet, 187
for remove-variable cmdlet, 232–233
for resolve-path cmdlet, 453
for restart-service cmdlet, 361

525

parameters

In
de

x

30_946939 bindex.qxp 3/15/07 7:11 PM Page 525

parameters (continued)
for select-object cmdlet, 144
for set-authenticodeSignature cmdlet, 377–378
for set-psDebug cmdlet, 408–413
for set-service cmdlet, 362
for set-traceSource cmdlet, 422
for set-variable cmdlet, 228
for start-service cmdlet, 362–363
for stop-service cmdlet, 363–364
for suspend-service cmdlet, 364
for test-path cmdlet, 450–451
for trace-command cmdlet, 419–420
variables as, 133–135
wildcards in values, 125–127, 200
for write-error cmdlet, 400–401
for write-psDebug cmdlet, 414

parentheses ()
role in parsing, 64
using with methods, 264

parser, PowerShell, 63–69
-passThru parameter

for new-variable cmdlet, 229
for pop-location cmdlet, 344, 345
for push-location cmdlet, 341
for set-location cmdlet, 188, 190
for set-variable cmdlet, 228
for stop-service cmdlet, 178

Path environment variable, 54, 67, 353
path names

fully qualified, 427–430
in PowerShell, 426–433
relative, 430–431
running commands and, 431–433

-path parameter
for copy-item cmdlet, 170
defined, 166
for get-childItem cmdlet, 191
for get-content cmdlet, 196
for join-path cmdlet, 452
for new-item cmdlet, 203
for push-location cmdlet, 341, 344
for remove-item cmdlet, 166, 167
for resolve-path cmdlet, 453
for test-path cmdlet, 450

PathInfo object, 344, 345
paths, cmdlets for, 450–453
-pathType parameter, for test-path cmdlet, 450
percent sign (%), in assignment operator, 220, 221
period (.)

for running PowerShell scripts, 23, 472
when using PowerShell command mode, 64, 65, 66, 68

$PID variable, 62
pipelines (|)

default formatter, 151–154
defined, 78
examples, 13, 14, 19–20, 41–42
grouping objects, 83–85
layout, 19
.NET objects in, 35–38, 57
overview, 19–20, 78–85
past limitations, 56–57
role in sorting objects, 81–83
separators in, 13, 78
sequence of commands, 78–81
symbol, 19, 78
syntax, 19

plus sign (+)
as addition operator, 218, 219, 248
in assignment operators, 220
in unary operators, 226–227

pop-location cmdlet, 93, 342, 344–345
positional parameters

overview, 127–131
-property parameter as, 156–157

PowerShell (Windows)
approaches to parsing, 63–69
architecture, 33–34
backward compatibility, 51–56
clearing screen in, 17–18
closing, 10
complete coverage forecast, 55
current working folder, 23
cycling through recently used commands, 18
defined, 3
enabling scripts, 9–10
error handling in, 381–382
exiting, 10
exploring Windows systems, 69–76
extended wildcards, 59–60
extensibility, 51–56
finding available commands, 11–14, 75–76
installing, 7–8, 368
loading console files, 90
loading snapins, 90–91
long term roadmap, 55
minimizing default risk, 368–374
need for, 25–31
.NET Framework basis, 34–35, 309–311
as object-based, 35–58
path names in, 426–433
repeating last-used command, 18
response to errors, 58, 66–67

526

parameters (continued)

30_946939 bindex.qxp 3/15/07 7:11 PM Page 526

starting, 8–11, 89–90
support for code debugging, 59
synthetic types, 306–308
system state information, 338–350
unsigned, 23
upgrade path to C#, 58
using to explore Windows registry, 458–461
working with file system, 425–453

PowerShell Analyzer, 41
PowerShell command, 89–90
precedence, operator, 219–220
preference variables, 115–116
-process parameter, 261
profile files, 97–100
$Profile variable, 62
profile.ps1 file, 98
$ProgressPreference variable, 62
prompt function, 113
-prompt parameter, 212, 213, 216
prompts. See command prompt
properties

expanding, 146–147
for FileInfo object, 438–439, 440, 441
measuring, 201–203
selecting, 145–146

-property parameter
for format-table cmdlet, 155, 156–157
for measure-object cmdlet, 201
for select-object cmdlet, 145–146

PropertyInfo object, 330, 331
PropertyItem class, 152–153
providers. See also drives; get-psProvider cmdlet

defined, 45, 183
finding, 183–184, 425
in fully qualified path names, 427
namespaces as, 346
overview, 45–51
relationship to drives, 45, 186
removing items, 166–175
WMI, 499

.pscl extension, 90
-PSConsoleFile PowerShell startup option, 10
-psDrive parameter, 195, 338, 339
$PSHome variable, 62
-psHost parameter, for trace-command cmdlet, 419
.psl extension, 22
-psProvider parameter

for get-location cmdlet, 195, 338, 339
for get-psDrive cmdlet, 185
for new-psDrive cmdlet, 204
for remove-psDrive cmdlet, 187

push-location cmdlet, 94, 341–344
$PWD variable, 62

Q
question mark (?)

in $? variable, 61
as wildcard, 59, 72, 125, 171

quotation mark, double (“)
at beginning of expression, 64, 65
in commands, 71, 431–432
parameters and, 119–120

quotation mark, single (‘), 119, 416, 431–432

R
-readCount parameter, 196
read-host cmdlet, 96, 134–135, 211, 212–214
-recommendedAction parameter, 400
-recurse parameter

for copy-item cmdlet, 170
for get-childItem cmdlet, 191
for new-item cmdlet, 167
for remove-item cmdlet, 166, 173–174

redirection operator (>>), 445–446
redirection operator (>), 18, 41, 407, 445–446
reflection, .NET, 324–333
RegEdit utility. See Registry Editor
registry

adding new keys, 457–458
allowed types, 457
backing up, 456, 457
list of hives, 456
making changes to, 461–464
navigating by using PowerShell, 458–461
overview, 455–458
removing items, 166–175

Registry Editor
accessing registry keys, 308
modifying ExecutionPolicy key value, 209–211
running, 456

Registry provider, 47–48, 184, 185, 346
regular expressions, 289–291
relative path names, 430–431
remote machines, 513–514
RemoteSigned execution policy, 208, 209, 211, 370,

372, 374
Remove() method, 266, 280–281
remove-item cmdlet, 94, 166–175
remove-itemProperty cmdlet, 94
remove-psDrive cmdlet, 94, 187
remove-psSnapin cmdlet, 92

527

remove-psSnapin cmdlet

In
de

x

30_946939 bindex.qxp 3/15/07 7:11 PM Page 527

remove-variable cmdlet, 96, 232–233
rename-item cmdlet, 94
rename-itemProperty cmdlet, 94
Replace() method, 266, 281–282
$ReportErrorShowExceptionClass variable, 62
$ReportErrorShowInnerException variable, 62
$ReportErrorShowSource variable, 62
$ReportErrorShowStackTrace variable, 62
repository, CIM, 499
-resolve parameter, for join-path cmdlet, 452
resolve-path cmdlet, 94, 450, 453
restart-service cmdlet, 94, 357, 361, 364
Restricted execution policy, 207, 208, 209, 370,

372, 373
resume-service cmdlet, 94, 357
-root parameter, 204

S
-scope parameter

for clear-variable cmdlet, 231
for get-psDrive cmdlet, 185
for get-variable cmdlet, 230
for new-psDrive cmdlet, 204
for new-variable cmdlet, 229
for remove-psDrive cmdlet, 187
for remove-variable cmdlet, 233
for set-variable cmdlet, 228

Script Library, WMI, 497–498
scripts, PowerShell

avoiding aliases in, 87
for COM objects, 43–44
enabling, 9–10, 68, 207–217
execution policies, 207–212, 370
minimizing default risk, 368–374
overview, 21–23, 41–43
path issues, 22, 23
path names and, 431–432
running, 22–23, 368, 431–432
saving .psl scripts in Notepad, 22
signing, 376–379
testing cmdlet combinations, 21–23

scroll bars, 18
security

execution policies and, 370–374
minimizing default risk, 368–374
running scripts, 368–374

Security log, 478
Security snapin, 90, 94
select-object cmdlet

defined, 96, 144
-expandProperty parameter in, 146–147

finding positional parameters, 127–128
-first parameter in, 148–150
-last parameter in, 148–150
overview, 144–145
properties, 144–145
-property parameter in, 145–146
for selecting most recent event log entries, 487–488
specifying properties to pass along, 104
-unique parameter in, 147–148
using to explore files, 439–442

select-string cmdlet, 96
semicolon (;), 20, 198
services, list of cmdlets, 357
Services MMC snap-in. See get-service cmdlet
set verb, 57
set-acl cmdlet, 94
set-alias cmdlet, 55, 96, 109–111, 348
set-authenticodeSignature cmdlet, 94, 376, 377
set-content cmdlet, 22, 94
set-date cmdlet, 96
set-executionPolicy cmdlet, 9, 94, 371
set-item cmdlet, 94
set-itemProperty cmdlet, 94
set-location cmdlet, 46, 47–48, 49, 94, 188–190
set-psDebug cmdlet, 92, 408–413, 415, 417
set-service cmdlet, 94, 357, 362
set-traceSource cmdlet, 96, 422
set-variable cmdlet, 96, 228–229
shell. See Windows PowerShell
shell aliases, system state information, 338, 346–349
shell functions, system state information, 338,

349–350
shell variables, system state information, 338, 350
$ShellId variable, 62
-showErrors parameter, 156
single quotation mark (‘), 119, 416, 431–432
signed scripts, 376–379
slash (/)

in assignment operator, 220, 221
in division operator, 218, 219

snapins
loading, 90–91
Microsoft.PowerShell.Core snapin, 90, 91, 92
Microsoft.PowerShell.Host snapin, 90, 93
Microsoft.PowerShell.Management snapin, 90,

93–94
Microsoft.PowerShell.Security snapin, 90, 94
Microsoft.PowerShell.Utility snapin, 90,

95–96
viewing cmdlets available, 91–92

sorting pipeline objects, 81–83

528

remove-variable cmdlet

30_946939 bindex.qxp 3/15/07 7:11 PM Page 528

sort-object cmdlet, 81–83, 96, 104, 484
spelling mistakes, 349
Split() method, 266, 282–285
split-path cmdlet, 94, 450
square brackets ([])

in PowerShell syntax for indicating .NET elements, 34,
268, 324

in syntax for designating array elements, 236
in wildcard searches, 59, 290, 429

-stack parameter
for get-location cmdlet, 195, 338
for push-location cmdlet, 341, 343

-stackName parameter
for get-location cmdlet, 195, 338
for push-location cmdlet, 341, 343, 344

starting Windows PowerShell, 8–10, 89–90
start-service cmdlet, 94, 357, 362–363
start-sleep cmdlet, 96
StartsWith() method, 266, 285
start-transcript cmdlet, 93
startup options, PowerShell, 10–11
-static parameter, 320, 322
-step parameter, 408, 411–413
stop-process cmdlet, 94, 175–178
stop-service cmdlet, 94, 178–181, 357, 363–364
stop-transcript cmdlet, 41, 93
StoreCountAndDate.psl script, 22
-strict parameter, 294, 311
strings. See also System.String class

casting to other classes, 287–291
comparing, 268–270
copying, 267

Substring() method, 266
subtraction operator (-), 218, 219
-sum parameter, 201
Suspend option, 412, 413
suspend-service cmdlet, 94, 357, 364
switch statement, 254–256
syntax errors, 403–408
synthetic types, 306–308
system errors, 381–401
System log, 478
system state, 338–350
System.AppDomain class, 353, 354
System.Boolean object, 315
System.Collections.HashTable object, 249
System.____ComObject type, 306–307
System.DateTime class, 34, 35. See also DateTime

object
System.Diagnostics.Process object, 34
System.Management.Automation.Cmdlet class,

381

System.Management.Automation.Core names-
pace, 185

System.Management.Automation.PSCmdlet

class, 381
System.Reflection namespace, 324
System.Resources namespace, 356–357
System.Security.SecureString object, 213–214
System.String class
Length property, 266
list of methods, 265–266
overview, 263–264
working with methods, 267–287

System.Type class, 333

T
Tab key, using to complete commands, 76–77,

112–113, 443–444
-targetObject parameter, 400
tee-object cmdlet, 96
terminating errors, 381, 382
test-path cmdlet, 94, 450–451
ThrowTerminatingError() method, 381
time and date examples, 34–38
-timeStampServer parameter, 377
ToCharArray() method, 266, 285–286
ToLower() method, 266, 286–287
ToLowerInvariant() method, 266, 286–287
ToString() method, 266
-totalCount parameter, 197, 198
ToUpper() method, 266, 287
ToUpperInvariant() method, 266, 287
-trace parameter, 408–410
trace-command cmdlet

defined, 96, 419
examples, 420–421
multiple positional parameters, 129–131
parameters for, 419–420

tracing, 418–423
trap statement, 392–397, 410–411
Trim() method, 266, 287
TrimEnd() method, 266, 287
TrimStart() method, 266, 287
$True variable, 62
typed arrays, 239–240
-typeName parameter, 294, 311, 313

U
unary operators (- and --), 226–227
underscore ($_) variable, 61, 71
-unique parameter, 145, 147–148

529

-unique parameter

In
de

x

30_946939 bindex.qxp 3/15/07 7:11 PM Page 529

Unrestricted execution policy, 208, 209, 370, 372,
373, 374

update-formatData cmdlet, 96, 162
update-typeData cmdlet, 96, 162
URI object, 287–288
Utility snapin, 90, 95–96

V
-value parameter

for new-item cmdlet, 203
for new-variable cmdlet, 229
for set-variable cmdlet, 228

-valueOnly parameter, 230
Variable provider, 184, 185, 346
variables

assigning values to, 228–229, 352
automatic, 60–62
clearing value, 231–232
creating, 229–230
as drives, 49, 346, 350
environment, 351–353
error-related, 345–346, 383–392
manipulating, 227–233
overview, 49–51
as parameters, 133–135
preference, 115–116
removing, 232–233
retrieving, 230–231

-verbose parameter
as common parameter, 132, 165, 166
for stop-service cmdlet, 181–182

$VerbosePreference variable, 62
verbosity, 85–87
verbs, in cmdlets, 13
-view parameter, 156
visible property, 295–296
Visual Studio 2005, 310
vertical bar (|)

default formatter, 151–154
defined, 78
examples, 13, 14, 19–20, 41–42
grouping objects, 83–85
layout, 19
.NET objects in, 35–38, 57
overview, 19–20, 78–85
past limitations, 56–57
role in sorting objects, 81–83
separators in, 13, 78
sequence of commands, 78–81
symbol, 19, 78
syntax, 19

W
-wait parameter, 197, 199, 200
$WarningPreference variable, 62
WBEM (Web-based enterprise management), 30
-whatIf parameter

for clear-variable cmdlet, 231
as common parameter, 166
defined, 132, 165
for new-item cmdlet, 203
for new-psDrive cmdlet, 204
for new-variable cmdlet, 229
overview, 39
for remove-item cmdlet, 170–171
for remove-psDrive cmdlet, 187
for remove-variable cmdlet, 233
set-authenticodeSignature cmdlet and, 377
for set-executionPolicy cmdlet, 371
for set-variable cmdlet, 228
stop-process cmdlet and, 175–178
stop-service cmdlet and, 178–180

$WhatIfPreference variable, 62
where-object cmdlet

defined, 92, 137
for filtering event log entries, 484–487, 489, 490
filtering overview, 138–140
-filterScript parameter in, 142–143
finding aliases for, 138, 347–348
-inputObject parameter in, 142–143
list of operators, 144
-match operator and, 290–291, 347
multiple filter tests, 138–140
operators for use in filtering, 79–81, 144
overview, 41, 137–138
parameters for, 142–143
simple filtering, 138, 139–140
together with GetProperties() method, 330
using to filter processes, 71–72, 73
using to filter services, 74–75

while statement, 258–259
-width parameter, 449
wildcards

asterisk as, 12, 48, 49, 59, 72, 73, 125, 171–173,
200, 202

extended, 59–60
for filtering processes, 72–73
in parameter values, 125–127, 200
question mark as, 59, 72, 125, 171
for removing items, 171–173

Win32_CacheMemory WMI class, 511–512
Win32_Date WMI class, 497

530

Unrestricted execution policy

30_946939 bindex.qxp 3/15/07 7:11 PM Page 530

Win32_PhysicalMemory WMI class, 510–511
Win32_Process WMI class, 497, 508–509
Win32_Processor WMI class, 497, 509–510
Win32_Service WMI class, 497, 512–513
windir environment variable, 465–466
Windows Explorer, 368
Windows Management Instrumentation (WMI)

accessing, 56
CIM Studio tool, 499–500
defined, 30–31
managed resources layer, 496–497
overview, 496–502
relationship to PowerShell, 38–39, 495
role of aliases, 51–52
tools, 499–502
WMI consumers layer, 499
WMI infrastructure layer, 497–499
WMI Object Browser, 500–502

Windows PowerShell
approaches to parsing, 63–69
architecture, 33–34
backward compatibility, 51–56
clearing screen in, 17–18
closing, 10
complete coverage forecast, 55
current working folder, 23
cycling through recently used commands, 18
defined, 3
enabling scripts, 9–10
error handling in, 381–382
exiting, 10
exploring Windows systems, 69–76
extended wildcards, 59–60
extensibility, 51–56
finding available commands, 11–14, 75–76
installing, 7–8, 368
loading console files, 90
loading snapins, 90–91
long term roadmap, 55
minimizing default risk, 368–374
need for, 25–31
.NET Framework basis, 34–35, 309–311
as object-based, 35–58
path names in, 426–433
repeating last-used command, 18
response to errors, 58, 66–67
starting, 8–11, 89–90
support for code debugging, 59
synthetic types, 306–308
system state information, 338–350
unsigned, 23

upgrade path to C#, 58
using to explore Windows registry, 458–461
working with file system, 425–453

Windows Script Host (WSH), 30, 299–301
Windows systems

exploring processes with get-process cmdlet, 69–71
exploring services with get-service cmdlet, 73–75
exploring with get-wmiobject cmdlet, 509–514
filtering processes by using wildcards, 72–73
filtering processes with where-object cmdlet, 69–71
finding running processes by using get-process

cmdlet, 69–71
WMI consumers, 499
WMI Object Browser, 500–502
WMI providers, 499
WMI Script Library, 497–498
WMI (Windows Management Instrumentation)

accessing, 56
CIM Studio tool, 499–500
defined, 30–31
managed resources layer, 496–497
overview, 496–502
relationship to PowerShell, 38–39, 495
role of aliases, 51–52
tools, 499–502
WMI consumers layer, 499
WMI infrastructure layer, 497–499
WMI Object Browser, 500–502

Word, as COM application, 301–302
-word parameter, 201
-wrap parameter, 155
write-debug cmdlet, 96, 413–418
write-error cmdlet, 96, 396, 400–401
WriteError() method, 381
write-host cmdlet

defined, 96
examples, 211, 394–395, 418
overview, 214–217
using to display expression results, 66
versus write-debug cmdlet, 413

write-output cmdlet, 96
write-progress cmdlet, 96
write-verbose cmdlet, 96
write-warning cmdlet, 96
WSH (Windows Script Host), 30, 299–301

X
XML files, console files as, 90
XML object, 289

531

XML object

In
de

x

30_946939 bindex.qxp 3/15/07 7:11 PM Page 531

Get more Wrox

Programmer to ProgrammerTM

at Wrox.com!
Special Deals
Take advantage of special offers
every month

Free Chapter Excerpts
Be the first to preview chapters from
the latest Wrox publications

Unlimited Access. . .
. . . to over 70 of our books in the
Wrox Reference Library (see more
details online)

Forums, Forums, Forums
Take an active role in online
discussions with fellow programmers

Meet Wrox Authors!
Read running commentaries from authors on their programming experiences
and whatever else they want to talk about

Join the community!

Sign-up for our free monthly newsletter at

newsletter.wrox.com

BROWSE BOOKS P2P FORUM FREE NEWSLETTER ABOUT WROX

Browse Books

.NET
SQL Server
Java

XML
Visual Basic
C#/C++

31_946939 bob.qxp 3/15/07 7:11 PM Page 532

